Solve the initial value problem below using the method of Laplace transforms. y"-16y=32t-8e^{-4t} y(0)=0 y'(0)=15

Question
Laplace transform
asked 2021-02-21
Solve the initial value problem below using the method of Laplace transforms.
\(y"-16y=32t-8e^{-4t}\)
\(y(0)=0\)
\(y'(0)=15\)

Answers (1)

2021-02-22
Step 1
Given, \(y"-16y=32t-8e^{-4t}\)
\(y(0)=0\)
\(y'(0)=15\)
Step 2
\(y"-16y=32t-8e^{-4t}\)
Take Laplace transform of both sides of the equation
\(L\left\{y''-16y\right\}=L\left\{32t-8e^{-4t}\right\}\)
\(L\left\{y''-16y\right\} : s^2L\left\{y\right\}-sy(0)-y'(0)-16L\left\{y\right\}\)
\(L\left\{32t-8e^{-4t}\right\} : \frac{32}{s^2}-\frac{8}{(s+4)}\)
\(s^2L\left\{y\right\}-sy(0)-y'(0)-16L\left\{y\right\}=\frac{32}{s^2}-\frac{8}{(s+4)}\)
Plug in the initial conditions: \(y(0)=0, y'(0)=15\)
\(s^2L\left\{y\right\}-s \cdot 0-15-16L\left\{y\right\}=\frac{32}{s^2}-\frac{8}{(s+4)}\)
Simplify
\(s^2L\left\{y\right\}-16L\left\{y\right\}-15=\frac{32}{s^2}-\frac{8}{(s+4)}\)
Step 3
Isolate \(L\left\{y\right\}:\)
\(L\left\{y\right\}=\left\{\frac{15s^3+52s^2+32s+128}{s^2(4+s)(s^2-16)}\right\}\)
Take the inverse Laplace transform
\(y=L^{-1}\left\{\frac{15s^3+52s^2+32s+128}{s^2(4+s)(s^2-16)}\right\}\)
\(y=-2t-2e^{-4t}+e^{-4t}t+2e^{4t}\)
0

Relevant Questions

asked 2021-03-02
Solve the third-order initial value problem below using the method of Laplace transforms
\(y'''+3y''−18y'−40y=−120\)
\(y(0)=6\)
\(y'(0)=45\)
\(y"(0)=-21\)
asked 2020-11-17
Solve the initial value problem below using the method of Laplace transforms
\(y"-35y=144t-36^{-6t}\)
\(y(0)=0\)
\(y'(0)=47\)
asked 2021-02-09
Solve the initial value problem below using the method of Laplace transforms
\(2ty''-3ty'+3y=6,y(0)=2, y'(0)=-3\)
asked 2021-01-31
Solve the initial value problem below using the method of Laplace transforms.
\(y"-4y'+40y=225 e^{5t}\)
\(y(0)=5\)
\(y'(0)=31\)
asked 2020-11-09
Solve the third-order initial value problem below using the method of Laplace transforms
\(y'''-2y"-21y'-18y=-18\)
\(y(0)=2\)
\(y'(0)=7\)
\(y"(0)=95\)
asked 2021-01-05
Solution of the following initial value problem using the Laplace transform
\(y"+4y=4t\)
\(y(0)=1\)
\(y'(0)=5\)
asked 2020-12-24
Find the solution of the initial value problem given below by Laplace transform.
\(x"+16x=\cos(4t)\)
\(x(0)=0 \text{ and } x'(0)=1\)
asked 2021-01-16
Use the Laplace transform to solve the given initial-value problem.
\(y'+4y=e-4t, y(0)=5\)
asked 2021-02-14
Use Laplace transforms to solve the following initial value problem
\(y"-y'-6y=0\)
\(y(0)=1\)
\(y'(0)=-1\)
asked 2020-11-16
Solve for Y(s), the Laplace transform of the solution y(t) to the initial value problem below.
\(y"+y=g(t) , y(0)=-4 , y'(0)=0\)
where \(g{{\left({t}\right)}}={\left\lbrace\begin{matrix}{t}&{t}<{4}\\{5}&{t}>{4}\end{matrix}\right.}\)
Y(s)-?
...