Using the definition, calculate the derivatives of the functions. Then

Brennan Flores 2021-09-28 Answered
Using the definition, calculate the derivatives of the functions. Then find the values of the derivatives as specified.
\(\displaystyle{k}{\left({z}\right)}={\frac{{{1}-{z}}}{{{2}{z}}}};{k}'{\left(-{1}\right)},{k}'{\left({1}\right)},{k}'{\left(\sqrt{{{2}}}\right)}\)

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question

Expert Answer

Laaibah Pitt
Answered 2021-09-29 Author has 16169 answers
Step 1
\(\displaystyle{k}{\left({z}\right)}={\frac{{{1}-{z}}}{{{2}{z}}}}\)
Step 2
Using Quotient Rule
\(\displaystyle{\left({\frac{{{f}}}{{{g}}}}\right)}={\frac{{{f}'{g}-{g}'{f}}}{{{g}^{{{2}}}}}}\)
Step 3
Using quotient rule to find the derivative
\(\displaystyle{k}'{\left({z}\right)}={\frac{{{1}}}{{{2}}}}{\left[{\frac{{{1}-{z}}}{{{z}}}}\right]}\)
\(\displaystyle{k}'{\left({z}\right)}={\frac{{{1}}}{{{2}}}}{\left[{\frac{{{z}{\left({1}-{z}\right)}'-{z}'{\left({1}-{z}\right)}}}{{{z}^{{{2}}}}}}\right]}\)
\(\displaystyle{k}'{\left({z}\right)}={\frac{{{1}}}{{{2}}}}{\left[{\frac{{-{z}-{\left({1}-{z}\right)}}}{{{z}^{{{2}}}}}}\right]}\)
\(\displaystyle{k}'{\left({z}\right)}={\frac{{{1}}}{{{2}}}}{\left[{\frac{{-{z}-{1}+{z}}}{{{z}^{{{2}}}}}}\right]}\)
\(\displaystyle{k}'{\left({z}\right)}={\left[{\frac{{{1}}}{{{2}{z}^{{{2}}}}}}\right]}\)
Step 4
Put z=1
\(\displaystyle{k}'{\left({1}\right)}={\left[{\frac{{{1}}}{{{2}}}}\right]}\)
Put z=-1
\(\displaystyle{k}'{\left(-{1}\right)}={\left[{\frac{{{1}}}{{{2}}}}\right]}\)
put \(\displaystyle{z}=\sqrt{{{2}}}\)
\(\displaystyle{k}'{\left(\sqrt{{{2}}}\right)}={\left[{\frac{{{1}}}{{{4}}}}\right]}\)
Have a similar question?
Ask An Expert
16
 
content_user
Answered 2021-11-20 Author has 2252 answers

Answer is given below (on video)

0

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-06-04
Using the definition, calculate the derivatives of the functions. Then find the values of the derivatives as specified.
\(\displaystyle{k}{\left({z}\right)}={\frac{{{1}-{z}}}{{{2}{z}}}}.{k}'{\left(-{1}\right)},{k}'{\left({1}\right)},{k}'{\left(\sqrt{{{2}}}\right)}\)
asked 2021-09-28
Using the definition, calculate the derivatives of the function. Then find the values of the derivatives as specified.
\(\displaystyle{g{{\left({t}\right)}}}={\frac{{{1}}}{{{t}^{{{2}}}}}};{g}'{\left(-{1}\right)},{g}'{\left({2}\right)},{g}'{\left(\sqrt{{{3}}}\right)}\)
asked 2021-05-26
Using the definition, calculate the derivatives of the function. Then find the values of the derivatives as specified.
\(\displaystyle{g{{\left({t}\right)}}}={\frac{{{1}}}{{{t}^{{{2}}}}}}.{g}'{\left(-{1}\right)},{g}'{\left({2}\right)},{g}'{\left(\sqrt{{{3}}}\right)}\)
asked 2021-02-14
Calculate the derivatives of the functions. Then find the values of the derivatives as specified.
\(\displaystyle{f{{\left({x}\right)}}}={4}-{x}^{{{2}}};{f}'{\left(-{3}\right)},{f}'{\left({0}\right)},{f}'{\left({1}\right)}\)
asked 2021-06-07
Calculate the first five derivatives of \(\displaystyle{f{{\left({x}\right)}}}={\sin{{x}}}\). Then determine \(\displaystyle{{f}^{{{\left({9}\right)}}}{\left({x}\right)}}\ {\quad\text{and}\quad}\ {{f}^{{{\left({102}\right)}}}{\left({x}\right)}}\).
asked 2021-06-20
Calculate the derivatives of the functions.
\(\displaystyle{f{{\left({x}\right)}}}={\left({4}{x}-{1}\right)}^{{-{1}}}\)
asked 2021-05-31
Use the Chain Rule to calculate the derivatives of the following functions.
\(\displaystyle{y}={\cos{{5}}}{t}\)
...