Step 1

\(\begin{array}{|c|c|}\hline X & X-\bar{X} & (X-\bar{X})^{2} \\ \hline 4450.42 & 187.1292 & 35017.33 \\ \hline 4596.96 & 33.6692 & 111335.1 \\ \hline 4366.46 & 103.1692 & 10643.88 \\ \hline 4455.65 & 192.3592 & 37002.05 \\ \hline 4151.52 & -111.771 & 12492.72 \\ \hline 3727.77 & -535.521 & 286782.6 \\ \hline 4283.26 & 19.96917 & 398.7676 \\ \hline 4527.94 & 264.6492 & 70039.18 \\ \hline 4407.68 & 144.3892 & 20848.23 \\ \hline 3946.49 & -316.801 & 100362.8 \\ \hline 4023.61 & -239.681 & 57446.9 \\ \hline 4221.73 & -41.5608 & 1727.303 \\ Total=51159.49 & & Total=744096.8 \\ \hline \end{array}\)

Step 2

a) Sample mean:

\(\displaystyle\overline{{{x}}}={\frac{{\sum{X}}}{{{n}}}}\)

\(\displaystyle={\frac{{{51159.49}}}{{{12}}}}\)

\(\displaystyle={4263.291}\)

The sample mean is 4263.291

Step 3

b) Sample Standard Deviation

\(\displaystyle{s}{d}=\sqrt{{{\frac{{\sum{\left({X}-\overline{{{X}}}\right)}^{{{2}}}}}{{{n}-{1}}}}}}\)

\(\displaystyle=\sqrt{{{\frac{{{744096.8}}}{{{12}-{1}}}}}}\)

\(\displaystyle={260.087}\)

The sample standard deviation is 260.087

Step 4

c) \(\displaystyle{95}\%\) Confidence Interval for Population mean:

\(\displaystyle\overline{{{x}}}\pm{t}_{{{n}-{1}}}\times{\frac{{{s}{d}}}{{\sqrt{{{n}}}}}}\)

\(\displaystyle{4263.291}\pm{2.201}\times{\frac{{{260.087}}}{{\sqrt{{{12}}}}}}\)

\(\displaystyle{4263.291}\pm{165.253}\)

\(\displaystyle{\left({4098.038},\ {4428.544}\right)}\)

\(\displaystyle{95}\%\) confidence interval for the population mean is \(\displaystyle{\left({4098.038},\ {4428.544}\right)}\)