Express the confidence interval 57.7 % \pm 4.9 % in

glamrockqueen7 2021-09-16 Answered

Express the confidence interval 57.7%±4.9% in interval form.
Express the answer in decimal format (donot eter as percents).

You can still ask an expert for help

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

Khribechy
Answered 2021-09-17 Author has 100 answers

Step 1
Confidence intervals refers to the probability that a population parameter will fall between a set of values for a certain proportion of times. In the given data confidence intervals are given in percentage we need to convert into decimal values.
Calculation
Confidence interval 57.7%±4.9%
(57.7÷100)±(4.9÷100)
=0.577±0.049.
Result
Confidence interval =[0.626,0.528].

Not exactly what you’re looking for?
Ask My Question

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

You might be interested in

asked 2021-03-09

In a study of the accuracy of fast food​ drive-through orders, Restaurant A had 298 accurate orders and 51 that were not accurate. a. Construct a 90​% confidence interval estimate of the percentage of orders that are not accurate. b. Compare the results from part​ (a) to this 90​% confidence interval for the percentage of orders that are not accurate at Restaurant​ B: 0.127<p<0.191. What do you​ conclude? a. Construct a 90​% confidence interval. Express the percentages in decimal form. ___

asked 2021-08-12

In a science fair​ project, Emily conducted an experiment in which she tested professional touch therapists to see if they could sense her energy field. She flipped a coin to select either her right hand or her left​ hand, and then she asked the therapists to identify the selected hand by placing their hand just under​ Emily's hand without seeing it and without touching it. Among 358 ​trials, the touch therapists were correct 172 times. Complete parts​ (a) through​ (d).
a) Given that Emily used a coin toss to select either her right hand or her left​ hand, what proportion of correct responses would be expected if the touch therapists made random​ guesses? ​(Type an integer or a decimal. Do not​ round.)
b) Using​ Emily's sample​ results, what is the best point estimate of the​ therapists' success​ rate? ​(Round to three decimal places as​ needed.)
c) Using​ Emily's sample​ results, construct a 90% confidence interval estimate of the proportion of correct responses made by touch therapists.
Round to three decimal places as​ needed - ?<p<?

asked 2020-12-27
Consider the next 1000 98% Cis for mu that a statistical consultant will obtain for various clients. Suppose the data sets on which the intervals are based are selected independently of one another. How many of these 1000 intervals do you expect to capture the corresponding value of μ?
What isthe probability that between 970 and 990 of these intervals conta the corresponding value of ? (Hint: Let
Round your answer to four decimal places.)
‘the number among the 1000 intervals that contain What king of random variable s 2) (Use the normal approximation to the binomial distribution
asked 2021-08-03
A simple random sample of 60 items resulted in a sample mean of 80. The population standard deviation is σ=15
a) Compute the 95% confidence interval for the population mean. Round your answers to one decimal place.
b) Assume that the same sample mean was obtained from a sample of 120 items. Provide a 95% confidence interval for the population mean. Round your answers to two decimal places.
c) What is the effect of a larger sample size on the interval estimate?
Larger sample provides a-Select your answer-largersmallerItem 5 margin of error.
asked 2021-01-23

The article “Stochastic Modeling for Pavement Warranty Cost Estimation” (J. of Constr. Engr. and Mgmnt., 2009: 352–359) proposes the following model for the distribution of Y = time to pavement failure. Let \(\displaystyle{X}_{{{1}}}\) be the time to failure due to rutting, and \(\displaystyle{X}_{{{2}}}\) be the time to failure due to transverse cracking, these two rvs are assumed independent. Then \(\displaystyle{Y}=\min{\left({X}_{{{1}}},{X}_{{{2}}}\right)}\). The probability of failure due to either one of these distress modes is assumed to be an increasing function of time t. After making certain distributional assumptions, the following form of the cdf for each mode is obtained: \(\displaystyle\Phi{\left[\frac{{{a}+{b}{t}}}{{\left({c}+{\left.{d}{t}\right.}+{e}{t}^{{{2}}}\right)}^{{\frac{{1}}{{2}}}}}\right]}\) where \(\Uparrow \Phi\) is the standard normal cdf. Values of the five parameters a, b, c, d, and e are -25.49, 1.15, 4.45, -1.78, and .171 for cracking and -21.27, .0325, .972, -.00028, and .00022 for rutting. Determine the probability of pavement failure within \(\displaystyle{t}={5}\) years and also \(\displaystyle{t}={10}\) years.

asked 2021-10-22
Let x be a continuous random variable with a standard normal distribution. Using the accompanying standard normal distribution table, find P(x2.26)
asked 2021-02-06
Write a two-way table of observed counts for sex and whether a participant in soccer had a lower-extremity injury or not. Determine a two-way table of expected counts for these data. Show calculations verifying that the value of the chi-square statistic is 2.51.