Find the solution of the initial value problem given below by Laplace transform y'-y=t e^t sin t y(0)=0

Question
Laplace transform
asked 2021-03-06
Find the solution of the initial value problem given below by Laplace transform
\(y'-y=t e^t \sin t\)
\(y(0)=0\)

Answers (1)

2021-03-07
Step 1
The answer is given by using properties of Laplace transform.
Step 2
\(y'-y=t e^t \sin(t)\)
\(y(0)=0\)
Apply the laplace transform
\(L\left\{y'\right\}-L\left\{y\right\}=L\left\{t e^t \sin(t)\right\}\)
\(\Rightarrow (sY(s)-y(0))-Y(s)=\frac{2(s-1)}{(s^2-2s+2)^2}\)
\(\Rightarrow sY(s)-Y(s)=\frac{2(s-1)}{(s^2-2s+2)^2}\)
\(\Rightarrow (s-1)Y(s)=\frac{2(s-1)}{(s^2-2s+2)^2}\)
\(\Rightarrow Y(s)=\frac{2}{(s^2-2s+2)^2}\)
Now apply inverse laplace transform
\(\Rightarrow L^{-1}\left\{Y(s)\right\}=L^{-1}\left\{\frac{2}{(s^2-2s+2)^2}\right\}\)
\(\Rightarrow y(t)=L^{-1}\left\{\frac{2}{((s-1)^2+1)^2}\right\}\)
\(\Rightarrow y(t)=e^t \sin(t)-t e^t \cos(t)\)
\(\Rightarrow y(t)=e^t(\sin(t)-t\cos(t))\)
0

Relevant Questions

asked 2020-11-02
\(y''+y=e^{-2t}\sin t , y(0)=y′(0)=0\)
solution of given initial value problem with Laplace transform
asked 2020-12-24
Find the solution of the initial value problem given below by Laplace transform.
\(x"+16x=\cos(4t)\)
\(x(0)=0 \text{ and } x'(0)=1\)
asked 2021-02-09
In an integro-differential equation, the unknown dependent variable y appears within an integral, and its derivative \(\frac{dy}{dt}\) also appears. Consider the following initial value problem, defined for t > 0:
\(\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}+{4}{\int_{{0}}^{{t}}}{y}{\left({t}-{w}\right)}{e}^{{-{4}{w}}}{d}{w}={3},{y}{\left({0}\right)}={0}\)
a) Use convolution and Laplace transforms to find the Laplace transform of the solution.
\({Y}{\left({s}\right)}={L}{\left\lbrace{y}{\left({t}\right)}\right)}{\rbrace}-?\)
b) Obtain the solution y(t).
y(t) - ?
asked 2020-12-25
Let x(t) be the solution of the initial-value problem
(a) Find the Laplace transform F(s) of the forcing f(t).
(b) Find the Laplace transform X(s) of the solution x(t).
\(x"+8x'+20x=f(t)\)
\(x(0)=-3\)
\(x'(0)=5\)
\(\text{where the forcing } f(t) \text{ is given by }\)
\(f(t) = \begin{cases} t^2 & \quad \text{for } 0\leq t<2 ,\\ 4e^{2-t} & \quad \text{for } 2\leq t < \infty . \end{cases}\)
asked 2020-11-16
Solve for Y(s), the Laplace transform of the solution y(t) to the initial value problem below.
\(y"+y=g(t) , y(0)=-4 , y'(0)=0\)
where \(g{{\left({t}\right)}}={\left\lbrace\begin{matrix}{t}&{t}<{4}\\{5}&{t}>{4}\end{matrix}\right.}\)
Y(s)-?
asked 2020-12-09
With the aid of Laplace Transform, solve the Initial Value Problem
\({y}\text{}{\left({t}\right)}-{y}'{\left({t}\right)}={e}^{t} \cos{{\left({t}\right)}}+ \sin{{\left({t}\right)}},{y}{\left({0}\right)}={0},{y}'{\left({0}\right)}={0}\)
asked 2021-02-08
Use the Laplace transform to solve the following initial value problem:
\(2y"+4y'+17y=3\cos(2t)\)
\(y(0)=y'(0)=0\)
a)take Laplace transform of both sides of the given differntial equation to create corresponding algebraic equation and then solve for \(L\left\{y(t)\right\}\) b) Express the solution \(y(t)\) in terms of a convolution integral
asked 2021-02-19
Use Laplace transform to solve the following initial-value problem
\(y"+2y'+y=0\)
\(y(0)=1, y'(0)=1\)
a) \displaystyle{e}^{{-{t}}}+{t}{e}^{{-{t}}}\)
b) \displaystyle{e}^{t}+{2}{t}{e}^{t}\)
c) \displaystyle{e}^{{-{t}}}+{2}{t}{e}^{t}\)
d) \displaystyle{e}^{{-{t}}}+{2}{t}{e}^{{-{t}}}\)
e) \displaystyle{2}{e}^{{-{t}}}+{2}{t}{e}^{{-{t}}}\)
f) Non of the above
asked 2021-01-16
Use the Laplace transform to solve the given initial-value problem.
\(y'+4y=e-4t, y(0)=5\)
asked 2020-12-17
use the Laplace transform to solve the given initial-value problem. \(y"+y'-2y=10e^{-t}, y(0)=0,y'(0)=1\)
...