In a binomial probability question, the phrase "at least 8"

tabita57i 2021-09-19 Answered
In a binomial probability question, the phrase "at least 8" consists of which set of numbers?
Group of answer choices
{9, 10, 11, ...}
{0, 1, 2, ..., 7}
{0, 1, 2, ... 8}
{8, 9, 10, ...}
You can still ask an expert for help

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

Answered 2021-09-20 Author has 118 answers
Step 1
Let X be a random variable follows binomial distribution with sample size n and probability of success p.
Step 2
For calculating probability of at least 8 successes the expression is as follow:
Thus, in a binomial probability question, the phrase “at least 8” consists of {8, 9, 10, …}.
Hence, the last option is correct.
Did you like this example?
Subscribe for all access

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

You might be interested in

asked 2021-05-21
At a certain college, 6% of all students come from outside the United States. Incoming students there are assigned at random to freshman dorms, where students live in residential clusters of 40 freshmen sharing a common lounge area. How many international students would you expect to find in a typical cluster? With what standard deviation?
asked 2021-09-20

A binomial probaity is given. Write the probably in words. Then, use a continuity correction to convert the binomial probability to a normal distributon probability.
Write the probability in words.
The probability of getting ? 138 successes.
Which of the fallowing is the normal probability statement that corresponds to the binomial probability statement?
A. P(x>137.5)

asked 2021-09-16
The risk of hepatoma among alcoholics without cirrhosis of the liver is 24%. Suppose we observe 7 alcoholics without cirrhosis. What is the probability that exactly one of these 7 people have a hepatoma?
asked 2022-09-17
Binomial probability majority question
Here p = 0.25, so q = 0.75, X = 0 , 1 , 2 , 3 , 4 , 5
The problem says what is the probability that the majority will accept; is it asking me to find P ( X = 3 ) or P ( X 3 )?
asked 2022-09-13
Binomial probability
Suppose that the probability of a company supplying a defective product is a and the probability that the supplied product is not defective is b. Before each product supplied is released for further use, it must be screened through a system which detects the potential defectiveness of the product. The probability that this process successfully detects a defective product is x, and the probability that it does not is y. What is the probability that at least one defective product will pass through the system undetected after 20 products have been screened?
asked 2021-09-25
A multinational business unit has an examination system for the batches of ventilator units bought from dealers. A batch typically comprises 40 ventilators. In the inspection system, a random sample of 20 is selected and all are tested. Suppose there are 5 faulty ventilators in the batch of 40. What is the probability that for a given sample there will be 2 faulty ventilator?"
asked 2022-02-09
A packet of vegetable seeds has a germination rate of 96%. What is the probability that exactly 10 of 12 seeds planted will sprout?

New questions

i'm seeking out thoughts for a 15-hour mathematical enrichment course in a chinese language high faculty. What (pretty) simple concern would you advocate as a subject for any such course?
historical past/issues:
My students are generally pretty good at math, but many of them have no longer been uncovered to rigorous or summary mathematical reasoning. an amazing topic would be one that could not be impossibly hard for students who have by no means written or study proofs in English.
i have taught this magnificence three times earlier than. (a part of the purpose that i'm posting that is that i have used up all my thoughts!) the primary semester I taught an introductory range theory elegance (which meandered its way toward a proof of quadratic reciprocity, though I think this become in the end too advanced/abstract for some of the students). the second one semester I taught fundamental graph idea and packages (with a focal point on planarity and coloring). The 1/3 semester I taught a class at the Rubik's dice.
the students' math backgrounds are pretty numerous: a number of them take part in contest math competitions, and so are familiar with IMO-fashion techniques, however many aren't. a number of them may additionally realize some calculus, however I cannot assume it. all of them are superb at what in the united states is on occasion termed "pre-calculus": trigonometry, conic sections, systems of linear equations (though, shockingly, no matrices), and the like. They realize what a binomial coefficient is.
So, any ideas? preferably, i'd like to find some thing a bit "sexy" (like the Rubik's cube) -- tries to encourage wide variety theory through cryptography seemed to fall on deaf ears, however being capable of "see" institution idea on the cube became pretty popular.
(Responses specifically welcome from folks who grew up in the percent -- any mathematical subjects you desire were protected within the excessive college curriculum?)