Question

a) Find the Laplace transformation of the following function by using definition of Laplace transformation: f(t) = cos(pt) text{ where } t geq 0

Laplace transform
ANSWERED
asked 2020-10-27
a) Find the Laplace transformation of the following function by using definition of Laplace transformation:
\(f(t) = \cos(pt) \text{ where } t \geq 0\)

Answers (1)

2020-10-28
Step 1
Given \(f(t)=\cos(pt)\)
Using the definition of Laplace Transform we have,
\(L\left[f(t)\right]=F(s)=\int_0^\infty e^{-st}f(t)dt\)
\(\Rightarrow L\left[\cos pt\right]=\int_0^\infty e^{-st}\cos pt dt\)
Now we will use Integration by parts to solve it
\(\text{Let } I=\int_0^\infty e^{-st} \cos pt dt\)
\(I=\cos pt \int e^{-st}dt-\int(-p \sin pt)\frac{e^{-st}}{-s}dt\)
\(I=\cos pt \left[\frac{e^{-st}}{-s}\right]-\frac{p}{s} \int \sin pt e^{-st}dt\)
\(I=-\frac{1}{s} \cos pt e^{-st} - \frac{p}{s}\left[\sin pt\left(\frac{e^{-st}}{-s}\right)-\int p \cos pt\left(\frac{e^{-st}}{-s}\right)\right]\)
\(I=\left[-\frac{1}{s} \cos pt e^{-st} - \frac{p}{(s^2)}\sin pt e^{-st}- \frac{(p^2)}{(s^2)}I\right]_0^\infty\)
\(\Rightarrow I\left[1+\frac{(p^2)}{(s^2)}\right]=-\frac{1}{s}\left[\cos pt e^{-st}+\frac{p}{s} \sin pt e^{-st}\right]_0^\infty\)
\(\Rightarrow I\left[\frac{(s^2+p^2)}{s^2}\right]=-\frac{1}{s}[(0+0)-(1+0)]\)
\(\Rightarrow I\left[\frac{(s^2+p^2)}{s^2}\right]=\frac{1}{s}\)
\(\Rightarrow I=\frac{s}{(s^2+p^2)}\)
Step 2
Hence,
\(I=\int_0^\infty e^{-st} \cos pt dt=L\left[\cos pt\right] =\frac{s}{(s^2+p^2)}\)
\(\text{Rightarrow By, definition of Laplace Transform of } (f(t)=\cos pt) \text{ is } \frac{s}{(s^2+p^2)}\)
0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours
...