 # For the polar point (-4, -\frac{3 \pi}{4})a) Give alternate coordinates SchachtN 2021-09-29 Answered

For the polar point $\left(-4,-\frac{3\pi }{4}\right)$
a) Give alternate coordinates with $r>0$ and $-2\pi \le \theta <0$.
b) Give alternate coordinates with $r<0$ and $0\le \theta <2\pi$.
c) Give alternate coordinates of your choice.

You can still ask an expert for help

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it Willie
Step 1
Given: $P\left(-4,-\frac{3\pi }{4}\right)$
a) $\left(-4,-\frac{3\pi }{4}\right)=\left(4,-\frac{3\pi }{4}+\pi \right)$
$=\left(4,\frac{\pi }{4}\right)$
So, $\left(-4,-\frac{3\pi }{4}\right)=\left(4,\frac{\pi }{4}\right)$
Step 2
b) $\left(-4,-\frac{3\pi }{4}\right)=\left(-4,-\frac{3\pi }{4}+2\pi \right)$
$=\left(-4,-\frac{5\pi }{4}\right)$
So, $\left(-4,-\frac{3\pi }{4}\right)=\left(-4,\frac{5\pi }{4}\right)$
c) $\left(-4,-\frac{3\pi }{4}\right)=\left(4,-\frac{3\pi }{4}+3\pi \right)$
$=\left(4,\frac{9\pi }{4}\right)$
So, $\left(-4,-\frac{3\pi }{4}\right)=\left(4,\frac{9\pi }{4}\right)$
###### Not exactly what you’re looking for? Jeffrey Jordon