Solve the initial value problem below using the method of Laplace transforms. y"-4y'+40y=225 e^{5t} y(0)=5 y'(0)=31

Solve the initial value problem below using the method of Laplace transforms. y"-4y'+40y=225 e^{5t} y(0)=5 y'(0)=31

Question
Laplace transform
asked 2021-01-31
Solve the initial value problem below using the method of Laplace transforms.
\(y"-4y'+40y=225 e^{5t}\)
\(y(0)=5\)
\(y'(0)=31\)

Answers (1)

2021-02-01
Step 1
Taking Laplace transform in the both the direction:
\(y"-4y'+40y=225 e^{5t}\)
\(y(0)=5\)
\(y'(0)=31\)
\(L\left\{y"-4y'+40y\right\}=L\left\{Y(s)\right\}\)
\(L\left\{y"\right\}-4L\left\{y'\right\}+40L\left\{y\right\}=225L\left\{Y(s)\right\}\)
\(L\left\{y"\right\}=s^2Y(s)-sy(0)-y'(0)\)
\(L(y')=sY(s)-y(0)\)
\(L(y)=Y(s) , L\left\{e^{at}\right\}=\frac{1}{(s-a)}\)
\(\left\{s^2Y(s)-sy(0)-y'(0)\right\}-4\left\{sY(s)-y(0)\right\}+40\left\{Y(s)\right\}=225\left\{\frac{1}{(s-5)}\right\}\)
\(\left\{s^2-4s+40\right\}Y(s)+\left\{-5s-11\right\}=225\left\{\frac{1}{(s-5)}\right\}\)
\(\left\{s^2-4s+40\right\}Y(s)+\left\{-5s-11\right\}=225\left\{\frac{1}{(s-5)}\right\}\)
\(\left\{s^2-4s+40\right\}Y(s)=225\left\{\frac{1}{(s-5)}\right\}+5s+11\)
\(Y(s)=\frac{225\left\{\frac{1}{(s-5)}\right\}+5s+11}{s^2-4s+40}\)
Step 2
Find the factor of the function:
\(Y(s)=\frac{225\left\{\frac{1}{(s-5)}\right\}+5s+11}{s^2-4s+40}=\)
\(=\frac{225}{(s-5)(s^2-4s+40)}+\frac{5s}{(s^2-4s+40)}+\frac{11}{(s^2-4s+40)}\)
\(=225\left\{\frac{-5s-5}{s^2-4s+40}+\frac{5}{(s-5)}\right\}+5 \cdot \frac{(s-2)}{(s-2)^2+36}+ 10 \cdot \frac{1}{(s-2)^2+36} +\left\{11 \cdot \frac{1}{(s-2)^2+36}\right\}\)
Step 3 Taking inverse Laplace transform in both direction:
\(L^{-1}\left\{Y(s)\right\}=L^{-1}\left\{\left\{\frac{(-5s-5)}{(s^2-4s+40)}+\frac{5}{(s-5)}\right\}+5 \cdot \frac{(s-2)}{(s-2)^2+36}+ 10 \cdot \frac{1}{(s-2)^2+36} +\left\{11 \cdot \frac{1}{(s-2)^2+36}\right\}\right\}\)
\(=L^{-1}{Y(s)}=L^{-1}\left\{\left\{\frac{(-5s-5)}{(s^2-4s+40)}+\frac{5}{(s-5)}\right\}+5 \cdot \frac{(s-2)}{(s-2)^2+36}+ 10 \cdot \frac{1}{(s-2)^2+36} +\left\{11 \cdot \frac{1}{(s-2)^2+36}\right\}\right\}\)
\(L^{-1}\left\{\frac{(-5s-5)}{(s^2-4s+40)}+\frac{5}{(s-5)}\right\}=L^{-1}\left\{-5 \cdot \frac{(s-2)}{(s-2)^2+36}- 15 \cdot \frac{1}{(s-2)^2+36}+ \frac{5}{(s-5)}\right\}\)
\(=-5L^{-1}\left\{\frac{(s-2)}{(s-2)^2+36}\right\}-15L^{-1}\left\{\frac{1}{(s-2)^2+36}\right\}+L^{-1}\left\{\frac{5}{(s-5)}\right\}\)
\(\left\{L^{-1}\left\{\frac{s-2}{(s-2)^2+36}\right\}=e^{2t} \cos(6t) , L^{-1}\left\{\frac{1}{(s-2)^2+36}\right\}=\frac{1}{6}e^{2t} \sin(6t) , L^{-1}\left\{\frac{5}{(s-5)}\right\}=5e^{5t}\right\}\)
\(=-5e^{2t} \cos (6t)-15e^{2t}\frac{1}{6}\sin(6t)+5e^{5t}\)
Step 4
Further solve:
\(L^{-1}\left\{\frac{5s}{(s-2)^2+36}\right\}=5L^{-1}\left\{\frac{(s-2)}{(s-2)^2+36}\right\}+10L^{-1}\left\{\frac{1}{(s-2)^2+36}\right\}\)
\(=5e^{2t}\cos(6t)+10e^{2t}\frac{1}{6}\sin(6t)\)
\(L^{-1}\left\{\frac{11}{s^2-4s+40}\right\}=11L^{-1}\left\{\frac{1}{(s-2)^2+36}\right\}\)
\(=\frac{11}{6}e^{2t}sin(6t)\)
\(L^{-1}(Y(s))=-5e^{2t}\cos(6t)-15e^{2t}\frac{1}{6}\sin(6t)+5e^{5t}+5e^{2t}\cos(6t)+10e^{2t}\frac{1}{6}\sin(6t)+\frac{11}{6}e^{2t}\sin(6t)\)
\(y=e^{2t}\sin(6t)+5e^{5t}\)
Step 5
Hence the solution of the given Laplace equation is given as:
\(y=e^{2t}\sin(6t)+5e^{5t}\)
0

Relevant Questions

asked 2021-03-02
Solve the third-order initial value problem below using the method of Laplace transforms
\(y'''+3y''−18y'−40y=−120\)
\(y(0)=6\)
\(y'(0)=45\)
\(y"(0)=-21\)
asked 2020-11-17
Solve the initial value problem below using the method of Laplace transforms
\(y"-35y=144t-36^{-6t}\)
\(y(0)=0\)
\(y'(0)=47\)
asked 2021-02-09
Solve the initial value problem below using the method of Laplace transforms
\(2ty''-3ty'+3y=6,y(0)=2, y'(0)=-3\)
asked 2021-02-21
Solve the initial value problem below using the method of Laplace transforms.
\(y"-16y=32t-8e^{-4t}\)
\(y(0)=0\)
\(y'(0)=15\)
asked 2020-11-09
Solve the third-order initial value problem below using the method of Laplace transforms
\(y'''-2y"-21y'-18y=-18\)
\(y(0)=2\)
\(y'(0)=7\)
\(y"(0)=95\)
asked 2021-01-16
Use the Laplace transform to solve the given initial-value problem.
\(y'+4y=e-4t, y(0)=5\)
asked 2021-01-05
Solution of the following initial value problem using the Laplace transform
\(y"+4y=4t\)
\(y(0)=1\)
\(y'(0)=5\)
asked 2020-11-16
Solve for Y(s), the Laplace transform of the solution y(t) to the initial value problem below.
\(y"+y=g(t) , y(0)=-4 , y'(0)=0\)
where \(g{{\left({t}\right)}}={\left\lbrace\begin{matrix}{t}&{t}<{4}\\{5}&{t}>{4}\end{matrix}\right.}\)
Y(s)-?
asked 2021-02-09
In an integro-differential equation, the unknown dependent variable y appears within an integral, and its derivative \(\frac{dy}{dt}\) also appears. Consider the following initial value problem, defined for t > 0:
\(\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}+{4}{\int_{{0}}^{{t}}}{y}{\left({t}-{w}\right)}{e}^{{-{4}{w}}}{d}{w}={3},{y}{\left({0}\right)}={0}\)
a) Use convolution and Laplace transforms to find the Laplace transform of the solution.
\({Y}{\left({s}\right)}={L}{\left\lbrace{y}{\left({t}\right)}\right)}{\rbrace}-?\)
b) Obtain the solution y(t).
y(t) - ?
asked 2021-02-15
By using Laplace transforms, solve the following differential equations subject to the given initial conditions.
\(y"-4y'=-4te^{2t}, y_0=0, y'_0 =1\)
\(y"+2y'+10y=-6e^{-t}\sin3t, y_0=0, y'_0=1\)
...