Compute the Inverse Laplace Transform of F(s) =frac{s}{R^2s^2+16pi^2} take R=70

Question
Laplace transform
asked 2021-01-31
Compute the Inverse Laplace Transform of \(F(s) =\frac{s}{R^2s^2+16\pi^2}\)
take R=70

Answers (1)

2021-02-01
Step 1
Given that, R = 70.
The given function is, \(F(s) =\frac{s}{R^2s^2+16\pi^2}\)
\(F(s)=\frac{s}{70^2s^2+16\pi^2}\)
\(F(s)=\frac{s}{4900s^2+16\pi^2}\)
\(f(t)=L^{-1}\left(\frac{s}{4900s^2+16\pi^2}\right)\)
It is known that, \(L^{-1}(sF(s))=\frac{d}{(dt)}f(t)+f(0)\)
Step 2
Apply the above property and obtain the inverse Laplace transform of the given function as shown below.
\(f(t)=L^{-1}\left(\frac{s}{4900s^2+16\pi^2}\right)\)
\(f(t)=L^{-1}\left(\frac{1}{4900s^2+16\pi^2}\right)+L^{-1}\left(\frac{1}{4900s^2+16\pi^2}\right)(0)\)
\(f(t)=\frac{d}{(dt)}\left(\frac{1}{280} \sin \left(\frac{(2\pi t)}{35}\right)\right)+0\)
\(f(t)=\frac{1}{4900} \cdot \cos\left(\frac{2\pi t}{35}\right)\)
Thus, the required inverse Laplace transform is obtained.
0

Relevant Questions

asked 2020-10-28
find the inverse Laplace transform of the given function
\(F(s)=\frac{e^{-2}+e^{-2s}-e^{-3s}-e^{-4s}}{s}\)
asked 2021-02-24
determine the inverse Laplace transform of F.
\(F(s)=\frac{e^{-2s}}{(s-3)^3}\)
asked 2021-01-08
find the inverse of Laplace transform
\(\frac{3}{(s+2)^2}-\frac{2s+6}{(s^2+4)}\)
asked 2020-11-07
Write down the qualitative form of the inverse Laplace transform of the following function. For each question first write down the poles of the function , X(s)
a) \(X(s)=\frac{s+1}{(s+2)(s^2+2s+2)(s^2+4)}\)
b) \(X(s)=\frac{1}{(2s^2+8s+20)(s^2+2s+2)(s+8)}\)
c) \(X(s)=\frac{1}{s^2(s^2+2s+5)(s+3)}\)
asked 2021-02-04
Find the inverse Laplace transforms of the functions given. Accurately sketch the time functions.
a) \(F(s)=\frac{3e^{-2s}}{s(s+3)}\)
b) \(F(s)=\frac{e^{-2s}}{s(s+1)}\)
c) \(F(s)=\frac{e^{-2s}-e^{-3s}}{2}\)
asked 2020-12-30
Find the inverse of Laplace transform
\(\frac{2s+3}{(s-7)^4}\)
asked 2020-11-05
Find the inverse laplace transform of the function
\(Y(s)=\frac{e^{-s}}{s(2s-1)}\)
asked 2020-12-29
Find the laplace transform of the following:
Change of Scale
\(\text{If } L\left\{f(t)\right\}=\frac{s^2-s+1}{(2s+1)^2(s-2)} \text{ , find } L\left\{f(2t)\right\}\)
asked 2020-10-31
Find the laplace transform of the following
\(f(t)=tu_2(t)\)
Ans. \(F(s)=\left(\frac{1}{s^2}+\frac{2}{s}\right)e^{-2s}\)
asked 2021-01-13
Find the inverse Laplace transform of the given function by using the convolution theorem. \({F}{\left({s}\right)}=\frac{s}{{{\left({s}+{1}\right)}{\left({s}^{2}+{4}\right)}}}\)
...