# Determine whether the given problem is an equation or an expression. If it is an

Determine whether the given problem is an equation or an expression. If it is an equation, then solve. If it is an expression, then simplify. (4x - 1)/10 - (5x + 2)/4 = -3

• Questions are typically answered in as fast as 30 minutes

### Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

brawnyN
Step 1
Given problem is
$$\displaystyle{\frac{{{\left({4}{x}-{1}\right)}}}{{{10}}}}-{\frac{{{\left({5}{x}+{2}\right)}}}{{{4}}}}=-{3}$$
Step 2
$$\displaystyle\because$$ Given problem contain sign of equality, so its a equation.
Step 3
$$\displaystyle{\frac{{{\left({4}{x}-{1}\right)}}}{{{10}}}}-{\frac{{{\left({5}{x}+{2}\right)}}}{{{4}}}}=-{3}$$
$$\displaystyle\Rightarrow{\frac{{{2}{\left({4}{x}-{1}\right)}-{5}{\left({5}{x}+{2}\right)}}}{{{20}}}}=-{3}$$
$$\displaystyle\Rightarrow{\frac{{{8}{x}-{2}-{25}{x}-{10}}}{{{20}}}}=-{3}$$
$$\displaystyle\Rightarrow-{17}{x}-{12}={\left(-{3}\right)}\times{20}$$
$$\displaystyle\Rightarrow-{17}{x}=-{60}+{12}$$
$$\displaystyle\Rightarrow-{17}{x}=-{48}$$
$$\displaystyle\Rightarrow{17}{x}={48}$$
$$\displaystyle\Rightarrow{x}={\frac{{{48}}}{{{17}}}}$$