# g(x) =(2x^2-3x-20)/(x-4), if x!=4 and =kx-15, if x=4 Evalu

g(x)
$$\displaystyle=\frac{{{2}{x}^{{2}}-{3}{x}-{20}}}{{{x}-{4}}},{\quad\text{if}\quad}{x}\ne{4}$$
and
=kx-15, if x=4
Evaluate the constant k that makes the function continuous.

• Questions are typically answered in as fast as 30 minutes

### Plainmath recommends

• Get a detailed answer even on the hardest topics.
• Ask an expert for a step-by-step guidance to learn to do it yourself.

Arnold Odonnell
For f(x) to be continuous at a point x=a:
$$\displaystyle{\underset{{{x}\to{a}^{+}}}{{\lim}}}{f{{\left({x}\right)}}}={\underset{{{x}\to{a}^{{-}}}}{{\lim}}}{f{{\left({x}\right)}}}={f{{\left({a}\right)}}}$$
It's given that g(x) is continuous at x=4, so
$$\displaystyle{\underset{{{x}\to{4}^{+}}}{{\lim}}}{g{{\left({x}\right)}}}={\underset{{{x}\to{4}^{{-}}}}{{\lim}}}{g{{\left({x}\right)}}}={g{{\left({4}\right)}}}$$
$$\displaystyle{\underset{{{x}\to{4}}}{{\lim}}}{g{{\left({x}\right)}}}={g{{\left({4}\right)}}}$$
$$\displaystyle{\underset{{{x}\to{4}}}{{\lim}}}\frac{{{2}{x}^{{2}}-{3}{x}-{20}}}{{{x}-{4}}}={k}{\left({4}\right)}-{15}$$
$$\displaystyle{\underset{{{x}\to{4}}}{{\lim}}}\frac{{{2}{x}^{{2}}-{8}{x}+{5}{x}-{20}}}{{{x}-{4}}}={4}{k}-{15}$$
$$\displaystyle{\underset{{{x}\to{4}}}{{\lim}}}\frac{{{2}{x}{\left({x}-{4}\right)}+{5}{\left({x}-{4}\right)}}}{{{x}-{4}}}={4}{k}-{15}$$
$$\displaystyle{\underset{{{x}\to{4}}}{{\lim}}}\frac{{{\left({2}{x}+{5}\right)}{\left({x}-{4}\right)}}}{{{x}-{4}}}={4}{k}-{15}$$
$$\displaystyle{\underset{{{x}\to{4}}}{{\lim}}}{\left({2}{x}+{5}\right)}={4}{k}-{15}$$
2(4)+5=4k-15
k=7