# Find domain of fog, if 1. f(x)=x+5; g(x)=7/(x+7) 2. f(x)=sqrtx;

Find domain of fog, if
1. $$\displaystyle{f{{\left({x}\right)}}}={x}+{5};{g{{\left({x}\right)}}}=\frac{{7}}{{{x}+{7}}}$$
2. $$\displaystyle{f{{\left({x}\right)}}}=\sqrt{{x}};{g{{\left({x}\right)}}}={6}{x}+{18}$$

• Questions are typically answered in as fast as 30 minutes

### Plainmath recommends

• Get a detailed answer even on the hardest topics.
• Ask an expert for a step-by-step guidance to learn to do it yourself.

saiyansruleA
1. Replace x by g(x) in f(x):
$$\displaystyle{f{{\left({x}\right)}}}={x}+{5},{g{{\left({x}\right)}}}=\frac{{7}}{{{x}+{7}}}$$
$$\displaystyle{\left({f}{o}{g}\right)}{\left({x}\right)}={f{{\left({g{{\left({x}\right)}}}\right)}}}={f{{\left(\frac{{7}}{{{x}+{7}}}\right)}}}$$
$$\displaystyle=\frac{{7}}{{{x}+{7}}}+{5}$$
$$\displaystyle=\frac{{{7}+{5}{x}+{35}}}{{{x}+{7}}}$$
$$\displaystyle{\left({f}{o}{g}\right)}{\left({x}\right)}=\frac{{{5}{x}+{42}}}{{{x}+{7}}}$$
$$\displaystyle{x}+{7}={0}$$
$$\displaystyle{x}=-{7}$$
Domain $$\displaystyle{\left({f}{o}{g}\right)}={\left(-\infty,-{7}\right)}\cup{\left(-{7},\infty\right)}$$
2. $$\displaystyle{f{{\left({x}\right)}}}=\sqrt{{x}};{g{{\left({x}\right)}}}={6}{x}+{18}$$
$$\displaystyle{\left({f}{o}{g}\right)}{\left({x}\right)}={f{{\left({g{{\left({x}\right)}}}\right)}}}$$
$$\displaystyle={f{{\left({6}{x}+{18}\right)}}}$$
$$\displaystyle=\sqrt{{{6}{x}+{18}}}$$
$$\displaystyle{\left({f}{o}{g}\right)}{\left({x}\right)}={f{{\left({g{{\left({x}\right)}}}\right)}}}$$
$$\displaystyle=\sqrt{{{6}{x}+{18}}}$$
$$\displaystyle{6}{x}+{18}\ge{0}$$
$$\displaystyle{6}{x}\ge-{18}$$
$$\displaystyle{x}\ge-{3}$$
Domain $$\displaystyle{\left({f}{o}{g}\right)}={\left[-{3},\infty\right)}$$