Describe the transformations that were applied to y=x^{2} to obtain each o

nitraiddQ 2021-09-26 Answered
Describe the transformations that were applied to \(\displaystyle{y}={x}^{{{2}}}\) to obtain each of the following functions. \(\displaystyle{a}{)}{y}=-{2}{\left({x}-{1}\right)}^{{{2}}}+{23}\ {b}{)}{y}={\left({\frac{{{12}}}{{{13}}}}{\left({x}+{9}\right)}\right)}^{{{2}}}-{14}\ {c}{)}{y}={x}^{{{2}}}-{8}{x}+{16}\ {d}{)}{y}={\left({x}+{\frac{{{3}}}{{{7}}}}\right)}{\left({x}+{\frac{{{3}}}{{{7}}}}\right)}\ {e}{)}{y}={40}{\left(-{7}{\left({x}-{10}\right)}\right)}^{{{2}}}+{9}\)

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question

Expert Answer

Talisha
Answered 2021-09-27 Author has 3753 answers
Step 1
Describe the transformed function for the original equation is \(\displaystyle{y}={x}^{{{2}}}\) for the following terms:
\(\displaystyle{\left({a}\right)}{y}=-{2}{\left({x}-{1}\right)}^{{{2}}}+{23}\)
\(\displaystyle{a}=-{2}\ {k}={1}\ {d}={1}\ {c}={23}\)
\(\displaystyle{\left({b}\right)}{y}={\left[{\frac{{{12}}}{{{13}}}}{\left({x}+{9}\right)}\right]}^{{{2}}}-{14}\)
\(\displaystyle{k}={\frac{{{12}}}{{{13}}}}\ {d}=-{9}\ {c}=-{14}\)
\(\displaystyle{\left({c}\right)}{y}={x}^{{{2}}}-{8}{x}+{16}\)
\(\displaystyle={\left({x}-{4}\right)}^{{{2}}}\)
\(\displaystyle{d}={4}\)
\(\displaystyle{\left({d}\right)}{y}={\left({x}+{\frac{{{3}}}{{{7}}}}\right)}{\left({x}+{\frac{{{3}}}{{{7}}}}\right)}\)
\(\displaystyle={\left({x}+{\frac{{{3}}}{{{7}}}}\right)}^{{{2}}}\)
\(\displaystyle{d}=-{\frac{{{3}}}{{{7}}}}\)
\(\displaystyle{\left({e}\right)}{y}={40}{\left[-{7}{\left({x}-{10}\right)}\right]}^{{{2}}}+{9}\)
\(\displaystyle{a}={40}\ {k}=-{7}\ {d}={10}\ {c}={9}\)
Have a similar question?
Ask An Expert
35
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-07-30

Describe the transformations that were applied to \(\displaystyle{y}={x}^{{{2}}}\) to obtain each of the following functions.

\(\displaystyle{a}{)}{y}=-{2}{\left({x}-{1}\right)}^{{{2}}}+{23}\ \)

\({b}{)}{y}={\left({\frac{{{12}}}{{{13}}}}{\left({x}+{9}\right)}\right)}^{{{2}}}-{14}\ \)

\({c}{)}{y}={x}^{{{2}}}-{8}{x}+{16}\ \)

\({d}{)}{y}={\left({x}+{\frac{{{3}}}{{{7}}}}\right)}{\left({x}+{\frac{{{3}}}{{{7}}}}\right)}\ \)

\({e}{)}{y}={40}{\left(-{7}{\left({x}-{10}\right)}\right)}^{{{2}}}+{9}\)

asked 2021-09-15

Describe the transformations that were applied to \(y=x^3 \)to create each of the following functions.
a) \(\displaystyle{y}={12}{\left({x}−{9}\right)}^{{3}}−{7}\)
b) \(\displaystyle{y}={\left(\frac{{7}}{{8}}{\left({x}+{1}\right)}\right)}{3}+{3}\)
c) \(\displaystyle{y}=−{2}{\left({x}−{6}\right)}^{{3}}−{8}\)
d) \(y = (x + 9) (x + 9) (x + 9)\)
e) \(\displaystyle{y}=−{2}{\left(−{3}{\left({x}−{4}\right)}\right)}^{{3}}−{5}\)
f) \(\displaystyle{y}={\left(\frac{{3}}{{4}}{\left({x}−{10}\right)}\right)}^{{3}}\)

asked 2021-09-11
Describe the transformations that must be applied to the parent function to obtain each of the following functions.
a) \(\displaystyle{f{{\left({x}\right)}}}=-{3}{\log{{\left({2}{x}\right)}}}\)
b) \(\displaystyle{f{{\left({x}\right)}}}={\log{{\left({x}-{5}\right)}}}+{2}\)
c) \(\displaystyle{f{{\left({x}\right)}}}={\left(\frac{{1}}{{2}}\right)}{\log{{5}}}{x}\)
d) \(\displaystyle{f{{\left({x}\right)}}}={\log{{\left(−{\left(\frac{{1}}{{3}}\right)}{x}\right)}}}−{3}\)
asked 2021-06-14

Describe the transformations that must be applied to \(y=x^2\) to create the graph of each of the following functions.
a) \(\displaystyle{y}=\frac{{1}}{{4}}{\left({x}-{3}\right)}^{{2}}+{9}\)
b) \(\displaystyle{y}={\left({\left(\frac{{1}}{{2}}\right)}{x}\right)}^{{2}}-{7}\)

asked 2021-09-18

Describe the transformations that must be applied to \(y=x^2\) to create the graph of each of the following functions.
a) \(\displaystyle{y}=\frac{{1}}{{4}}{\left({x}-{3}\right)}^{{2}}+{9}\)
b) \(\displaystyle{y}={\left({\left(\frac{{1}}{{2}}\right)}{x}\right)}^{{2}}-{7}\)

asked 2021-09-24

State the parent function that must be transformed to create the graph of each of the following functions. Then describe the transformations that must be applied to the parent function.
a) \(\displaystyle{y}={\left(\frac{{5}}{{4}}\right)}{x}^{{4}}+{3}\)
b) \(y=3x-4\)
c) \(\displaystyle{y}={\left({3}{x}+{4}\right)}^{{3}}-{7}\)
d) \(\displaystyle{y}=-{\left({x}+{8}\right)}^{{4}}\)
e) \(y=-4.8(x-3)(x-3)\)
f) \(\displaystyle{2}{\left({\left(\frac{{1}}{{5}}\right)}{x}+{7}\right)}^{{3}}-{4}\)

asked 2021-05-04

Describe the transformations that were applied to \(y=x^3\) to create each of the following functions.
a) \(\displaystyle{y}={12}{\left({x}−{9}\right)}^{{3}}−{7}\)
b) \(\displaystyle{y}={\left(\frac{{7}}{{8}}{\left({x}+{1}\right)}\right)}{3}+{3}\)
c) \(\displaystyle{y}=−{2}{\left({x}−{6}\right)}^{{3}}−{8}\)
d) \(y = (x + 9) (x + 9) (x + 9)\)
e) \(\displaystyle{y}=−{2}{\left(−{3}{\left({x}−{4}\right)}\right)}^{{3}}−{5}\)
f) \(\displaystyle{y}={\left(\frac{{3}}{{4}}{\left({x}−{10}\right)}\right)}^{{3}}\)

...