Use the Laplace transform to solve the given differential equation subject to the indicated initial conditions. y''-7y'+6y =e^t + delta(t-3) + delta(t-5) y(0) = 0 y'(0) = 0

Use the Laplace transform to solve the given differential equation subject to the indicated initial conditions. y''-7y'+6y =e^t + delta(t-3) + delta(t-5) y(0) = 0 y'(0) = 0

Question
Laplace transform
asked 2021-01-19
Use the Laplace transform to solve the given differential equation subject to the indicated initial conditions.
\(y''-7y'+6y =e^t + \delta(t-3) + \delta(t-5)\)
\(y(0) = 0\)
\(y'(0) = 0\)

Answers (1)

2021-01-20
Step 1
Here we use table of Laplace transforms and some properties of Laplace transform.
Step 2
\(y''-7y'+6y =e^t + \delta(t-3) + \delta(t-5)\)
\(y(0) = 0\)
\(y'(0) = 0\)
Apply laplace transform \(\Rightarrow L\left\{y"\right\}-7L\left\{y'\right\}+6L\left\{y\right\}=L\left\{e^t\right\}+L\left\{\delta(t-3)\right\}+L\left\{\delta(t-5)\right\}\)
\(\text{use } L\left\{\delta(t-c)\right\}=e^{-cs}\)
\(\Rightarrow (s^2Y(s)-sY(0)-y'(0))-7(sY(s)-y(0))+6y(s)=\frac{1}{(s-1)}+e^{-3s}+e^{-5s}\)
\(\Rightarrow (s^2-7s+6)Y(s)=\frac{1}{(s-1)}+e^{-3s}+e^{-5s}\)
\(\Rightarrow Y(s)=\frac{1}{(s-1)(s^2-7s+6)}+\frac{e^{-3s}}{(s^2-7s+6)}+\frac{e^{-5s}}{(s^2-7s+6)}\)
Now apply inverse laplace transform
\(\Rightarrow L^{-1}\left\{Y(s)\right\}=L^{-1}\left\{\frac{1}{(s-1)(s^2-7s+6)}\right\}+L^{-1}\left\{\frac{e^{-3s}}{(s^2-7s+6)}\right\}+L^{-1}\left\{\frac{e^{-5s}}{(s^2-7s+6)}\right\}\)
Now use paricl and use table of Laplace transforms
\(\Rightarrow y(t)=-\frac{1}{6}t \cdot e^t - \frac{1}{6} e^(t-3)\cdot \delta(t-3)-\frac{1}{6}e^{t-5}\cdot \delta(t-5)\)
here we use properties \(L^{-1}\left\{F(s-c)\right\}=e^{ct} \cdot f(t)\)
\(L^{-1}\left\{e^{-cs} \cdot F(s)\right\}=y(t) \cdot f(t)\)
0

Relevant Questions

asked 2021-02-15
By using Laplace transforms, solve the following differential equations subject to the given initial conditions.
\(y"-4y'=-4te^{2t}, y_0=0, y'_0 =1\)
\(y"+2y'+10y=-6e^{-t}\sin3t, y_0=0, y'_0=1\)
asked 2020-12-06
Use the Laplace transform to solve the given initial-value problem.
\(\displaystyle{y}{''}+{8}{y}'+{41}{y}=\delta{\left({t}-\pi\right)}+\delta{\left({t}-{3}\pi\right)},\ \ \ \ {y}{\left({0}\right)}={1},\ \ \ \ {y}'{\left({0}\right)}={0}\ \ {y}{\left({t}\right)}=?\)
asked 2021-03-09
How to solve for third order differential equation of \(y"'-7y'+6y =2 \sin (t)\) using Method of Laplace Transform when \(y(0)=0, y'(0)=0, y"(0)=0\)?
Step by step
asked 2020-11-14
Use the Laplace transform to solve the given initial-value problem
\(y′′+2y′+y =\delta(t-4)\)
\(y(0)=0\)
\(y′(0)=0\)
asked 2021-02-09
In an integro-differential equation, the unknown dependent variable y appears within an integral, and its derivative \(\frac{dy}{dt}\) also appears. Consider the following initial value problem, defined for t > 0:
\(\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}+{4}{\int_{{0}}^{{t}}}{y}{\left({t}-{w}\right)}{e}^{{-{4}{w}}}{d}{w}={3},{y}{\left({0}\right)}={0}\)
a) Use convolution and Laplace transforms to find the Laplace transform of the solution.
\({Y}{\left({s}\right)}={L}{\left\lbrace{y}{\left({t}\right)}\right)}{\rbrace}-?\)
b) Obtain the solution y(t).
y(t) - ?
asked 2021-02-08
Use Laplace Transform to solve the given equation:
\(y'' + 6y' + 5y = t \cdot U (t-2)\)
\(y(0) = 1\)
\(y' (0) = 0\)
asked 2020-12-01
Using Laplace Transform , solve the following differential equation
\({y}\text{}-{4}{y}={e}^{{-{3}{t}}},{y}{\left({0}\right)}={0},{y}'{\left({0}\right)}={2}\)
a) \(\frac{14}{{20}}{e}^{{{2}{t}}}-\frac{5}{{30}}{e}^{{-{2}{t}}}-\frac{9}{{30}}{e}^{{-{6}{t}}}\)
b) \(\frac{11}{{20}}{e}^{{{2}{t}}}-\frac{51}{{20}}{e}^{{-{2}{t}}}-\frac{4}{{20}}{e}^{{-{3}{t}}}\)
c) \(\frac{14}{{15}}{e}^{{{2}{t}}}-\frac{5}{{10}}{e}^{{-{2}{t}}}-\frac{9}{{20}}{e}^{{-{3}{t}}}\)
d) \(\frac{14}{{20}}{e}^{{{2}{t}}}+\frac{5}{{20}}{e}^{{-{2}{t}}}-\frac{9}{{20}}{e}^{{-{3}{t}}}\)
asked 2021-01-16
Use the Laplace transform to solve the given initial-value problem.
\(y'+4y=e-4t, y(0)=5\)
asked 2021-02-08
Use the Laplace transform to solve the following initial value problem:
\(2y"+4y'+17y=3\cos(2t)\)
\(y(0)=y'(0)=0\)
a)take Laplace transform of both sides of the given differntial equation to create corresponding algebraic equation and then solve for \(L\left\{y(t)\right\}\) b) Express the solution \(y(t)\) in terms of a convolution integral
asked 2021-01-25
Use the Laplace transform to solve the given system of differential equations.
\(\frac{(d^2x)}{(dt^2)}+\frac{(d^2y)}{(dt^2)}=\frac{t}{2}\)
\(\frac{(d^2x)}{(dt^2)}-\frac{(d^2y)}{(dt^2)}=4t\)
\(x(0) = 5, x'(0) = 0,\)
\(y(0) = 0, y'(0) = 0\)
...