Use the Laplace transform to solve the given initial-value problem. y'+4y=e-4t, y(0)=5

Question
Laplace transform
asked 2021-01-16
Use the Laplace transform to solve the given initial-value problem.
\(y'+4y=e-4t, y(0)=5\)

Answers (1)

2021-01-17
Step 1
To apply Laplace transform technique to obtain the solution of the given initial value problem
Step 2
Obtain an equation for \(F(s) = L(y(t))\)
Recall , \(L(y'(t))=sL(y(t))-f(0)\)
apply Laplace tranform to
\(y'+4y=e^(-4t) , y(0)=5\) , to get
\(sF(s)+4F(s)-5=L(e^{-4t})=\frac{1}{(s+4)}\)
Step 3
Find the solution y(t) by taking the inverse Laplace transform of F(s), usimg standard formula
\(F(s)(s+4)=5+\frac{1}{(s+4)}\)
\(F(s)=\frac{5}{(s+4)}+\frac{1}{(s+4)^2}\)
\(\Rightarrow y(t)=L^{-1}(F(s))\)
\(\text{So, } y(t)=5e^{-4t}+te^{-4t}\)
Step 4
ANSWER: \(y(t) = 5e^{-4t}+te^{-4t}\)
Check:
\(y(t)=5e^{-4t}+te^{-4t}\)
\(y'(t)=-20e^{-4t}+e^{-4t}-4te^{-4t}\)
\(\text{so , } y'+4y=e^{-4t} , y(0)=5\)
0

Relevant Questions

asked 2021-02-08
Use the Laplace transform to solve the following initial value problem:
\(2y"+4y'+17y=3\cos(2t)\)
\(y(0)=y'(0)=0\)
a)take Laplace transform of both sides of the given differntial equation to create corresponding algebraic equation and then solve for \(L\left\{y(t)\right\}\) b) Express the solution \(y(t)\) in terms of a convolution integral
asked 2021-01-08
use the Laplace transform to solve the given initial-value problem
\(y''+5y'+4y=0\)
\(y(0)=1\)
\(y'(0)=0\)
asked 2021-01-05
Solution of the following initial value problem using the Laplace transform
\(y"+4y=4t\)
\(y(0)=1\)
\(y'(0)=5\)
asked 2021-02-19
Use Laplace transform to solve the following initial-value problem
\(y"+2y'+y=0\)
\(y(0)=1, y'(0)=1\)
a) \displaystyle{e}^{{-{t}}}+{t}{e}^{{-{t}}}\)
b) \displaystyle{e}^{t}+{2}{t}{e}^{t}\)
c) \displaystyle{e}^{{-{t}}}+{2}{t}{e}^{t}\)
d) \displaystyle{e}^{{-{t}}}+{2}{t}{e}^{{-{t}}}\)
e) \displaystyle{2}{e}^{{-{t}}}+{2}{t}{e}^{{-{t}}}\)
f) Non of the above
asked 2020-12-17
use the Laplace transform to solve the given initial-value problem. \(y"+y'-2y=10e^{-t}, y(0)=0,y'(0)=1\)
asked 2020-11-10
use the Laplace transform to solve the given initial-value problem.
\(y"-3y'+2y=4 \ , \ y(0)=0 \ , \ y'(0)=1\)
asked 2020-10-28
Use the Laplace transform to solve the given initial-value problem.
\(\displaystyle{y}{''}-{6}{y}'+{13}{y}={0},\ \ \ {y}{\left({0}\right)}={0},\ \ \ {y}'{\left({0}\right)}=-{9}\)
asked 2021-03-04
use the Laplace transform to solve the given initial-value problem.
\(y"+y=f(t)\)
\(y(0)=0 , y'(0)=1\) where
\(\displaystyle f{{\left({t}\right)}}={\left\lbrace\begin{matrix}{1}&{0}\le{t}<\frac{\pi}{{2}}\\{0}&{t}\ge\frac{\pi}{{2}}\end{matrix}\right.}\)
asked 2020-12-06
Use the Laplace transform to solve the given initial-value problem.
\(\displaystyle{y}{''}+{8}{y}'+{41}{y}=\delta{\left({t}-\pi\right)}+\delta{\left({t}-{3}\pi\right)},\ \ \ \ {y}{\left({0}\right)}={1},\ \ \ \ {y}'{\left({0}\right)}={0}\ \ {y}{\left({t}\right)}=?\)
asked 2020-10-31
Use the Laplace transform to solve the given initial-value problem
\({y}{''}+{2}{y}'+{y}={0},{y}{\left({0}\right)}={1},{y}'{\left({0}\right)}={1}\)
...