Solve the following initial value problems using Laplace Transforms: a) frac{d^2y}{dt^2}+4frac{dy}{dt}+3y=1, y(0=0) , y'(0)=0 b) frac{d^2y}{dt^2}+4frac{dy}{dt}=1, y(0=0) , y'(0)=0 c) 2frac{d^2y}{dt^2}+3frac{dy}{dt}-2y=te^{-2t}, y(0=0) , y'(0)=-2

Solve the following initial value problems using Laplace Transforms: a) frac{d^2y}{dt^2}+4frac{dy}{dt}+3y=1, y(0=0) , y'(0)=0 b) frac{d^2y}{dt^2}+4frac{dy}{dt}=1, y(0=0) , y'(0)=0 c) 2frac{d^2y}{dt^2}+3frac{dy}{dt}-2y=te^{-2t}, y(0=0) , y'(0)=-2

Question
Laplace transform
asked 2021-01-10
Solve the following initial value problems using Laplace Transforms:
\(a) \frac{d^2y}{dt^2}+4\frac{dy}{dt}+3y=1,\)
\(y(0=0) , y'(0)=0\)
\(b) \frac{d^2y}{dt^2}+4\frac{dy}{dt}=1,\)
\(y(0=0) , y'(0)=0\)
\(c) 2\frac{d^2y}{dt^2}+3\frac{dy}{dt}-2y=te^{-2t},\)
\(y(0=0) , y'(0)=-2\)

Answers (1)

2021-01-11
Step 1 We need to solve the given differential equations using Laplace transformation.
\(a) \frac{d^2y}{dt^2}+4\frac{dy}{dt}+3y=1,\)
\(y(0=0) , y'(0)=0\)
Now , taking Laplace transformation both of the sides.
\(L\left\{\frac{d^2y}{dt^2}+4\frac{dy}{dt}+3y\right\}=L\left\{1\right\}\)
\(\Rightarrow s^2Y(s)-sy(0)-y'(0)+4(sY(s)-y(0))+3Y(s)=\frac{1}{s}\)
\(\Rightarrow (s^2+4s+3)Y(s)=\frac{1}{s} (\text{ Using } y(0)=0 , y'(0)=0)\)
\Rightarrow Y(s)=\frac{1}{s^2+4s+3}\)
\(\Rightarrow Y(s)=\frac{1}{s(s+1)(s+3)}\)
\(\Rightarrow Y(s)= \frac{1}{3s}-\frac{1}{2(s+1)}+\frac{1}{6(s+3)}\) (By the method of partial fraction)
Step 2
Now, taking inverse Laplace transformation to get the final answer.
\(\Rightarrow y(t)=L^{-1}\left\{\frac{1}{3s}-\frac{1}{2(s+1)}+\frac{1}{6(s+3)}\right\}\)
\(\Rightarrow y(t)=\frac{1}{3}L^{-1}\left\{\frac{1}{s}\right\}-\frac{1}{2}L^{-1}\left\{\frac{1}{s+1}\right\}+\frac{1}{6}L^{-1}\left\{\frac{1}{s+3}\right\}\)
\(\Rightarrow y(t)=\frac{1}{3}\cdot 1 -\frac{1}{2} \cdot e^{-t}+\frac{1}{6} \cdot e^{-3t}\)
\(\Rightarrow y(t)=\frac{1}{3}-\frac{e^{-t}}{2}+\frac{e^{-3t}}{6}\)
Answer \(y(t)=\frac{1}{3}-\frac{e^{-t}}{2}+\frac{e^{-3t}}{6}\)
Step 3
\(b) \frac{d^2y}{dt^2}+4\frac{dy}{dt}=1,\)
\(y(0=0) , y'(0)=0\)
Now , taking Laplace transformation both of the sides. \(L\left\{\frac{d^2y}{dt^2}+4\frac{dy}{dt}\right\}=L\left\{1\right\}\)
\(\Rightarrow s^2Y(s)-sy(0)-y'(0)+4(sY(s)-y(0))=\frac{1}{s}\)
\(\Rightarrow (s^2+4s)Y(s)=\frac{1}{s} (\text{Using } y(0)=0 , y'(0)=0)\)
\(\Rightarrow Y(s)=\frac{1}{s(s^2+4s)}\)
\(\Rightarrow Y(s)=\frac{1}{s(s+1)(s+3)}\)
\(\Rightarrow Y(s)= \frac{1}{4s^2}+\frac{1}{16(s+4)}-\frac{1}{16s}\) (By the method of partial fraction)
Step 4
Now, taking inverse Laplace transformation to get the final answer.
\(\Rightarrow y(t)=L^{-1}\left\{\frac{1}{4s^2}+\frac{1}{16(s+4)}-\frac{1}{16s}\right\}\)
\(\Rightarrow y(t)=\frac{1}{4}L^{-1}\left\{\frac{1}{s^2}\right\}+\frac{1}{16}L^{-1}\left\{\frac{1}{s+4}\right\}-\frac{1}{16}L^{-1}\left\{\frac{1}{s}\right\}\)
\(\Rightarrow y(t)=\frac{1}{4}\cdot t +\frac{1}{16} \cdot e^{-4t}-\frac{1}{16} \cdot 1\)
\(\Rightarrow y(t)=\frac{t}{4}+\frac{e^{-4t}}{16} - \frac{1}{16}\)
Answer \(y(t)=\frac{t}{4}+\frac{e^{-4t}}{16} - \frac{1}{16}\)
Step 5
For (c),
\(2\frac{d^2y}{dt^2}+3\frac{dy}{dt}-2y=te^{-2t}\)
\(y(0=0) , y'(0)=-2\)
Now , taking Laplace transformation both of the sides.
\(L\left\{2\frac{d^2y}{dt^2}+3\frac{dy}{dt}-2y\right\}=L\left\{te^(-2t)\right\}\)
\(\Rightarrow 2(s^2Y(s)-sy(0)-y'(0))+3(sY(s)-y(0))-2Y(s)=\frac{1}{(s+2)^2}\)
\(\Rightarrow (2s^2+3s-2)Y(s)+4=\frac{1}{(s+2)^2} (\text{ Using } y(0)=0 , y'(0)=-2)\)
\(\Rightarrow (2s^2+3s-2)Y(s)=\frac{1}{(s+2)^2-4}\)
\(\Rightarrow Y(s)=\frac{\frac{1}{(s+2)^2}-4}{2s^2+3s-2}\)
\(\Rightarrow Y(s)=\frac{-4s^2-16s-15}{(s+2)^2(2s^2+3s-2)}\)
\(\Rightarrow Y(s)=-\frac{192}{125(2s-1)}+\frac{96}{125(s+2)}-\frac{2}{25(s+2)^2}-\frac{1}{5(s+2)^3}\)
(By the method of partial fraction)
Step 6
Now, taking inverse Laplace transformation to get the final answer.
\(\Rightarrow y(t)=L^{-1}\left\{-\frac{192}{250(s-\frac{1}{2})}+\frac{96}{125(s+2)}-\frac{2}{25(s+2)^2}-\frac{1}{5(s+2)^3}\right\}\)
\(\Rightarrow y(t)=-\frac{192}{250}L^{-1}\left\{\frac{1}{s-\frac{1}{2}}\right\}+\frac{96}{125}L^{-1}\left\{\frac{1}{s+2}\right\}-\frac{2}{25}L^{-1}\left\{\frac{1}{(s+2)^2}\right\}-\frac{1}{5}L^{-1}\left\{\frac{1}{(s+2)^3}\right\}\)
\(\Rightarrow y(t)=-\frac{192}{250}\cdot e^{\frac{1}{2t}}+\frac{96}{125}\cdot e^{-2t}-\frac{2}{25}\cdot te^{-2t}-\frac{1}{5}\cdot t^2e^{-2t}\)
\(\Rightarrow y(t)=-\frac{192}{250}e^{\frac{t}{2}}+\frac{96}{125}e^{-2t}-\frac{2}{25}te^{-2t}-\frac{1}{5}t^2e^{-2t}\)
Answer: \(y(t)=-\frac{192}{250}e^{\frac{t}{2}}+\frac{96}{125}e^{-2t}-\frac{2}{25}te^{-2t}-\frac{1}{5}t^2e^{-2t}\)
0

Relevant Questions

asked 2021-02-09
In an integro-differential equation, the unknown dependent variable y appears within an integral, and its derivative \(\frac{dy}{dt}\) also appears. Consider the following initial value problem, defined for t > 0:
\(\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}+{4}{\int_{{0}}^{{t}}}{y}{\left({t}-{w}\right)}{e}^{{-{4}{w}}}{d}{w}={3},{y}{\left({0}\right)}={0}\)
a) Use convolution and Laplace transforms to find the Laplace transform of the solution.
\({Y}{\left({s}\right)}={L}{\left\lbrace{y}{\left({t}\right)}\right)}{\rbrace}-?\)
b) Obtain the solution y(t).
y(t) - ?
asked 2021-02-26
Solve the following initial value problems using Laplace Transforms:
\(\displaystyle\frac{{{d}^{2}{y}}}{{{\left.{d}{x}\right.}^{2}}}+{25}{y}={t}\)
\(y(0)=0\)
\(y'(0)=0.04\)
asked 2021-02-15
By using Laplace transforms, solve the following differential equations subject to the given initial conditions.
\(y"-4y'=-4te^{2t}, y_0=0, y'_0 =1\)
\(y"+2y'+10y=-6e^{-t}\sin3t, y_0=0, y'_0=1\)
asked 2020-11-09
Use Laplace transform to evaluate the integral
\(\int_0^\infty te^{-2t} \sin(2t)dt\)
a) \(\frac{1}{B}\)
b) not defined
c) \(\frac{4s}{(s^2+4)^2}\)
d) \(\frac{4(s+2)}{(s^2+4s+8)^2}\)
asked 2021-02-19
Use Laplace transform to solve the following initial-value problem
\(y"+2y'+y=0\)
\(y(0)=1, y'(0)=1\)
a) \displaystyle{e}^{{-{t}}}+{t}{e}^{{-{t}}}\)
b) \displaystyle{e}^{t}+{2}{t}{e}^{t}\)
c) \displaystyle{e}^{{-{t}}}+{2}{t}{e}^{t}\)
d) \displaystyle{e}^{{-{t}}}+{2}{t}{e}^{{-{t}}}\)
e) \displaystyle{2}{e}^{{-{t}}}+{2}{t}{e}^{{-{t}}}\)
f) Non of the above
asked 2021-02-21
Find the Laplace transforms of the following time functions.
Solve problem 1(a) and 1 (b) using the Laplace transform definition i.e. integration. For problem 1(c) and 1(d) you can use the Laplace Transform Tables.
a)\(f(t)=1+2t\) b)\(f(t) =\sin \omega t \text{Hint: Use Euler’s relationship, } \sin\omega t = \frac{e^(j\omega t)-e^(-j\omega t)}{2j}\)
c)\(f(t)=\sin(2t)+2\cos(2t)+e^{-t}\sin(2t)\)
asked 2020-12-24
Solve the following differential equations using the Laplace transform
\(\frac{(dy)}{(dt)}-4y=4-2t ,\)
\(y(0)=0\)
asked 2021-03-02
\(\text{Laplace transforms A powerful tool in solving problems in engineering and physics is the Laplace transform. Given a function f(t), the Laplace transform is a new function F(s) defined by }\)
\(F(s)=\int_0^\infty e^{-st} f(t)dt
\(\text{where we assume s is a positive real number. For example, to find the Laplace transform of } f(t)=e^{-t} \text{ , the following improper integral is evaluated using integration by parts:}
\(F(s)=\int_0^\infty e^{-st}e^{-t}dt=\int_0^\infty e^{-(s+1)t}dt=\frac{1}{s+1}\)
\(\text{ Verify the following Laplace transforms, where u is a real number. }\)
\(f(t)=t \rightarrow F(s)=\frac{1}{s^2}\)
asked 2021-02-09
Solve the initial value problem below using the method of Laplace transforms
\(2ty''-3ty'+3y=6,y(0)=2, y'(0)=-3\)
asked 2020-11-09
Solve the third-order initial value problem below using the method of Laplace transforms
\(y'''-2y"-21y'-18y=-18\)
\(y(0)=2\)
\(y'(0)=7\)
\(y"(0)=95\)
...