Using Laplave Transform, evaluate the integro-differential equation. y"(x)+9y(x)=40e^x . y(0)=5 , y'(0)=-2

ka1leE 2021-09-23 Answered

Using Laplave Transform, evaluate the integro-differential equation
\(y''(x)+9y(x)=40e^x ; y(0)=5 , y'(0)=-2\)

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question

Expert Answer

izboknil3
Answered 2021-09-24 Author has 6427 answers

Step 1
Solve the given differential equation by Laplace transform.
The given equation is \(y''(x)+9y(x)=40e^x ; y(0)=5 , y'(0)=-2\)
The given equation is \(\displaystyle{y}{\left({0}\right)}={5}\ \text{ and }\ {y}'{\left({0}\right)}=-{2}\)
Step 2
Taking the Laplace transform on both sides of given equation.
\(L\left\{y''(x)+9y(x)\right\}=L\left\{40e^x\right\}\)
\(L\left\{y''(x)\right\}+9L\left\{y(x)\right\}=40L(e^x)\)
\(\left\{s^2\overline{y}-sy(0)-y'(0)\right\}+9\overline{y}=40\left\{\frac{1}{s-1}\right\} \ \ \left\{L(e^{ax})=\frac{1}{s-a}\right\}\)
\(s^2\overline{y}-s(5)-(-2)+9\overline{y}=\frac{40}{s-1} \ \ \ \left\{y(0)=5 \text{ and } y'(0)=-2\right\}\)
\(\displaystyle{s}^{{2}}\overline{{{y}}}-{5}{s}+{2}+{9}\overline{{{y}}}={\frac{{{40}}}{{{s}-{1}}}}\)
\(\displaystyle\overline{{{y}}}{\left({s}^{{2}}+{9}\right)}={\frac{{{40}}}{{{s}-{1}}}}+{5}{s}-{2}\)
\(\displaystyle\overline{{{y}}}{\left({s}^{{2}}+{9}\right)}={\frac{{{40}+{\left({5}{s}-{2}\right)}{\left({s}-{1}\right)}}}{{{s}-{1}}}}\)
\(\displaystyle\overline{{{y}}}={\frac{{{5}{s}^{{2}}-{7}{s}+{42}}}{{{\left({s}-{1}\right)}{\left({s}^{{2}}+{9}\right)}}}}\dot{{s}}{\left({2}\right)}\)
Step 3
Solve the R.H.S. of equation (2) by partial fraction.
\(\displaystyle{\frac{{{5}{s}^{{2}}-{7}{s}+{42}}}{{{\left({s}-{1}\right)}{\left({s}^{{2}}+{9}\right)}}}}={\frac{{{A}}}{{{s}-{1}}}}+{\frac{{{B}{s}+{C}}}{{{s}^{{2}}+{9}}}}\)
\(\displaystyle={\frac{{{A}{\left({s}^{{2}}+{9}\right)}+{\left({B}{s}+{C}\right)}{\left({s}-{1}\right)}}}{{{\left({s}-{1}\right)}{\left({s}^{{2}}+{9}\right)}}}}\)
\(\displaystyle={\frac{{{A}{s}^{{2}}+{9}{A}+{B}{s}^{{2}}-{B}{s}+{C}{s}-{C}}}{{{\left({s}-{1}\right)}{\left({s}^{{2}}+{9}\right)}}}}\)
\(\displaystyle={\frac{{{\left({A}+{B}\right)}{s}^{{2}}+{\left(-{B}+{C}\right)}{s}+{\left({9}{A}-{C}\right)}}}{{{\left({s}-{1}\right)}{\left({s}^{{2}}+{9}\right)}}}}\)
Equating the coefficients of same variables.
\(A+B=5\)
\(-B+C=-7\)
\(9A-C=42\)
Hence, \(a=5 , c=-6 , b=1\)
\(\displaystyle{\frac{{{5}{s}^{{2}}-{7}{s}+{42}}}{{{\left({s}-{1}\right)}{\left({s}^{{2}}+{9}\right)}}}}={\frac{{{4}}}{{{s}-{1}}}}+{\frac{{{s}-{6}}}{{{s}^{{2}}+{9}}}}\dot{{s}}{\left({3}\right)}\)
Step 4
Equating equation (2) and (3).
\(\overline{y}=\frac{4}{s-1}+\frac{s-6}{s^2+9} \left\{\text{ from (2) and (3)}\right\}\)
Taking the inverse transform
\(L^{-1}\left\{\overline{y}\right\}=L^{-1}\left\{\frac{4}{s-1}+\frac{s-6}{s^2+9}\right\}\)
\(y=4L^{-1}\left\{\frac{1}{s-1}\right\}+L^{-1}\left\{\frac{s}{s^2+3^2}\right\}-6L^{-1}\left\{\frac{1}{s^2+3^2}\right\}\)
\(\displaystyle={4}{e}^{{x}}+{\cos{{3}}}{x}-{6}\cdot{\frac{{{1}}}{{{3}}}}{\sin{{3}}}{x}\)
\(\displaystyle={4}{e}^{{x}}+{\cos{{3}}}{x}-{2}{\sin{{3}}}{x}\)
Hence, the solution of the equation is \(\displaystyle{4}{e}^{{x}}+{\cos{{3}}}{x}-{2}{\sin{{3}}}{x}\)

Have a similar question?
Ask An Expert
16
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-09-03
Solve equation using Laplace transform
\(\displaystyle\ddot{{{y}}}+{9}{y}=\delta{\left({t}-{\frac{{\pi}}{{{6}}}}\right)}{\sin{{\left({t}\right)}}},{y}{\left({0}\right)}={0},\dot{{{y}}}{\left({0}\right)}={0}\)
asked 2021-09-22
The Laplace transform L \(\displaystyle{\left\lbrace{e}^{{-{t}^{{2}}}}\right\rbrace}\) exists, but without finding it solve the initial-value problem \(\displaystyle{y}{''}+{9}{y}={3}{e}^{{-{t}^{{2}}}},{y}{\left({0}\right)}={0},{y}'{\left({0}\right)}={0}\)
asked 2021-09-30

Solve the ordinary differential equation with initial conditions using Laplace transform.
\(y''+4y'+13y=20e^{-t} , y_0=1 , y'_0=3\)
The solution of the above equation is given as
\(\displaystyle{y}={A}{e}^{{{B}{x}}}+{e}^{{{C}{x}}}{\sin{{3}}}{t}-{e}^{{{D}{x}}}{\cos{{3}}}{t}\)

asked 2021-09-15

Solve the following differential equations using the Laplace transform
\(\displaystyle{y}\text{}{2}{y}'+{y}={t}+{3}\)
\(y(0)=1 , y'(0)=0\)

asked 2021-09-03

Solve the following differential equations using the Laplace transform
\(y"-4y=0\)
\(y(0)=0 , y'(0)=0\)

asked 2021-09-03

Solve the following differential equation by the laplace transform method
\(\displaystyle{6}{y}^{{{\left({4}\right)}}}+{7}{y}{'''}+{21}{y}\text{}{28}{y}'-{12}{y}={t}{\left({\cos{{\left({2}{t}\right)}}}+{t}{e}^{{{\frac{{-{3}{t}}}{{{2}}}}}}\right)}\)
\(y(0)=0 , y'(0)=1 , y"(0)=0 , y'''(0)=-1\)

asked 2021-09-07
Solve the following ODE by using Laplace transform
\(\displaystyle{y}'{\left({x}\right)}+{4}{y}{\left({x}\right)}={1},{y}{\left({0}\right)}={2}\)

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question
...