determine the inverse Laplace transform of F. F(s)=frac{e^{-2s}}{(s-3)^3}

determine the inverse Laplace transform of F. F(s)=frac{e^{-2s}}{(s-3)^3}

Question
Laplace transform
asked 2021-02-24
determine the inverse Laplace transform of F.
\(F(s)=\frac{e^{-2s}}{(s-3)^3}\)

Answers (1)

2021-02-25
Step 1
Let f(t) be the inverse Laplace transform of the given function
\(F(s)=\frac{e^{-2s}}{(s-3)^3}\)
Take inverse Laplace transform on both sides:
\(L^{-1}\left[F(s)\right]=L^{-1}\left[\frac{e^{-2s}}{(s-3)^3}\right]\)
\(\Rightarrow f(t)=L^{-1}\left[\frac{e^{-2s}}{(s-3)^3}\right]\)
Use Inverse Laplace Transform Rule :
If \(L^{-1}\left[F(s)\right]=f(t) , \text{ then } L^{-1}\left[e^{-as}F(s)\right]=H(t-a)f(t-a)\) where , H(t) is Heavside step function
Now, we have a = 2 in our case
Hence,
\(f(t)=H(t-2)L^{-1}\left[\frac{1}{(s-3)^3}\right]\)
Step 2
Calculation of inverse Laplace Transform of function on right side:
Apply inverse Laplace Transform rule : If \(L^{-1}[F(s)]=f(t) , \text{ then } L^{-1}[F(s-a)]=e^{at}f(t)\)
\(\Rightarrow L^{-1}\left[\frac{1}{(s-3)^3}\right]=e^{3t}L^{-1}\left[\frac{1}{s^3}\right]=e^{3t}L^{-1}\left[\frac{2}{2s^3}\right]\)
\(\Rightarrow L^{-1}\left[\frac{1}{(s-3)^3}\right]=e^{3t}\frac{1}{2}L^{-1}\left[\frac{2}{s^3}\right]\)
\(\Rightarrow L^{-1}[\frac{1}{(s-3)^3}]=e^{3t}\frac{1}{2t^2} \left\{\text{ Using } L^{-1}\left[\frac{n!}{s^(n+1)}\right]=t^n \right\}\)
\(\Rightarrow L^{-1}\left[\frac{1}{(s-3)^3}\right]=\frac{t^2}{2e^{3t}}\)
Hence, we get:
\(f(t)=H(t-2)\left(\frac{t-2}{2}\right)e^{3(t-2)}\)
Step 3
Answer:
Inverse Laplace Transform is given by:
\(f(t)=H(t-2)\left(\frac{t-2}{2}\right)e^{3(t-2)}\)
0

Relevant Questions

asked 2020-10-28
find the inverse Laplace transform of the given function
\(F(s)=\frac{e^{-2}+e^{-2s}-e^{-3s}-e^{-4s}}{s}\)
asked 2021-06-11

Inverse Laplace transformation

\( (s^2 + s)/(s^2 +1)(s^2 + 2s + 2)\)

asked 2020-11-05
Find the inverse laplace transform of the function
\(Y(s)=\frac{e^{-s}}{s(2s-1)}\)
asked 2021-02-04
Find the inverse Laplace transforms of the functions given. Accurately sketch the time functions.
a) \(F(s)=\frac{3e^{-2s}}{s(s+3)}\)
b) \(F(s)=\frac{e^{-2s}}{s(s+1)}\)
c) \(F(s)=\frac{e^{-2s}-e^{-3s}}{2}\)
asked 2021-01-31
Compute the Inverse Laplace Transform of \(F(s) =\frac{s}{R^2s^2+16\pi^2}\)
take R=70
asked 2020-12-30
Find the inverse of Laplace transform
\(\frac{2s+3}{(s-7)^4}\)
asked 2021-01-08
find the inverse of Laplace transform
\(\frac{3}{(s+2)^2}-\frac{2s+6}{(s^2+4)}\)
asked 2020-11-07
Write down the qualitative form of the inverse Laplace transform of the following function. For each question first write down the poles of the function , X(s)
a) \(X(s)=\frac{s+1}{(s+2)(s^2+2s+2)(s^2+4)}\)
b) \(X(s)=\frac{1}{(2s^2+8s+20)(s^2+2s+2)(s+8)}\)
c) \(X(s)=\frac{1}{s^2(s^2+2s+5)(s+3)}\)
asked 2021-02-08
Find the inverse Laplace transform of \(F(s)=\frac{(s+4)}{(s^2+9)}\)
a)\(\cos(t)+\frac{4}{3}\sin(t)\)
b)non of the above
c) \(\cos(3t)+\sin(3t)\)
d) \(\cos(3t)+\frac{4}{3} \sin(3t)\)
e)\(\cos(3t)+\frac{2}{3} \sin(3t)\)
f) \(\cos(t)+4\sin(t)\)
asked 2020-10-31
Find the laplace transform of the following
\(f(t)=tu_2(t)\)
Ans. \(F(s)=\left(\frac{1}{s^2}+\frac{2}{s}\right)e^{-2s}\)
...