Derive the Laplace transform of the following function sin(h(at))

Derive the Laplace transform of the following function sin(h(at))

Question
Laplace transform
asked 2021-02-05
Derive the Laplace transform of the following function
\(\sin(h(at))\)

Answers (1)

2021-02-06
Step 1 We have to derive the Laplace transform of function:
\(\sin(h(at))\)
We know from definition of hyperbolic function,
\(\sin hx=\frac{e^x-e^{-x}}{2}\)
If x=at then,
\(\sin h x =\frac{e^x-e^{-x}}{2}\)
\(\sin h at =\frac{e^{at}-e^{-at}}{2}\)
\(=\frac{1}{2}(e^{at}-e^{-at})\)
Step 2
Now finding Laplace transform,
\(L(\sin h at)=L(\frac{1}{2}(e^{at}-e^{-at})\)
\(=\frac{1}{2}(L{e^{at}}-L(e^{-at}))\)
We know the Laplace transform of exponential function,
\(L(e^{ax})=\frac{1}{(s-a)}\)
if a=-a then \(L(e^{-ax})=\frac{1}{(s+a)}\)
Putting Laplace transform of exponential function, we get
\(\frac{1}{2}(L{e^{at}}-L(e^{-at}))=\frac{1}{2}((\frac{1}{(s-a)})-(\frac{1}{(s+a)})\)
\(=\frac{1}{2}\frac{(s+a-(s-a))}{(s-a)(s+a)}\)
\(=\frac{1}{2}\frac{(s+a-s+a)}{(s^2-a^2)} \text{ since } (\sin ce (a+b)(a-b)=a^2-b^2)\)
\(=\frac{1}{2}\frac{2a}{(s^2-a^2)}\)
\(=\frac{a}{s^2-a^2}\)
Hence, Laplace transform of \(\sin h at\) is \(\frac{a}{(s^2-a^2)}\)
0

Relevant Questions

asked 2020-10-28
Find laplace transform of each following
a) \(\displaystyle{t}^{n}\)
b) \(\displaystyle \cos{\omega}{t}\)
c) \(\displaystyle \sin{{h}}{\left({c}{t}\right)}\)
d) \(\displaystyle \cos{{h}}{\left({c}{t}\right)}\)
asked 2020-10-31
Use integration by parts to find the Laplace transform of the given function
\(f(t)=4t\cos h(at)\)
asked 2021-01-10
Determine the transfer function (H(s)) of the following system using Laplace transform properties.
\(\ddot{{y}}+{4}\dot{{y}}+{4}{y}=-{x}+{2}\dot{{x}}\)
Note: Assume that all initial conditions are zero
asked 2021-01-27
Derive the transform of \(f(t)=\sin kt\) by using the identity \(\sin kt =\frac{1}{2}u (e^{i kt}-e^{-i kt})\)
asked 2021-02-10
Find the equation by applying the Laplace transform.
\(\displaystyle{y}^{{{\left({4}\right)}}}-{y}= \sin{{h}}{t}\)
\(y(0)=y'(0)=y"(0)=0\)
\(y'''(0)=1\)
asked 2020-10-25
Please provide steps
The inverse Laplace transform for
\(\displaystyle{F}{\left({s}\right)}=\frac{8}{{{s}+{9}}}-\frac{6}{{{s}^{2}-\sqrt{{3}}}}\) is
a) \(\displaystyle{8}{e}^{{-{9}{t}}}-{6} \sin{{h}}{{\left({3}{t}\right)}}\)
b) \(\displaystyle{8}{e}^{{-{9}{t}}}-{6} \cos{{h}}{\left({3}{t}\right)}\)
c) \(\displaystyle{8}{e}^{{{9}{t}}}-{6} \sin{{h}}{\left({3}{t}\right)}\)
d) \(\displaystyle{8}{e}^{{{9}{t}}}-{6} \cos{{h}}{\left({3}{t}\right)}\)
asked 2020-11-01
Calculate the Laplace transform
\(L\left\{\sin(t-k) \cdot H(t-k)\right\}\)
asked 2021-02-16
\(\text{Find the Laplace transform }\ F(s)=L\left\{f(t)\right\}\ \text{of the function }\ f(t)=6+\sin(3t) \ \text{defined on the interval }\ t\geq0\)
asked 2020-11-06
Find Laplace transform of the given function
\(te^{-4t}\sin 3t\)
asked 2021-03-05
Find the laplace transform of the following:
\(a) t^2 \sin kt\)
\(b) t\sin kt\)
...