Question

Find the Laplace transforms of the following time functions. Solve problem 1(a) and 1 (b) using the Laplace transform definition i.e. integration. For

Laplace transform
ANSWERED
asked 2021-02-21
Find the Laplace transforms of the following time functions.
Solve problem 1(a) and 1 (b) using the Laplace transform definition i.e. integration. For problem 1(c) and 1(d) you can use the Laplace Transform Tables.
a)\(f(t)=1+2t\) b)\(f(t) =\sin \omega t \text{Hint: Use Euler’s relationship, } \sin\omega t = \frac{e^(j\omega t)-e^(-j\omega t)}{2j}\)
c)\(f(t)=\sin(2t)+2\cos(2t)+e^{-t}\sin(2t)\)

Answers (1)

2021-02-22
Step 1 To find the Laplace transform of the following functions.
Laplace transform of a function f(t) can be defined as \(L(f(t))=\int_0^\infty f(t)e^{-st}dt\)
Step 2
a) To find the Laplace transform of \(f(t)=1+2t\)
\(L(f(t))=L(1+2t)\)
\(=\int_0^\infty (1+2t)e^{-st}dt\)
\(=\int_0^\infty e^{-st}dt+\int_0^\infty(2t)e^{-st}dt\)
\(=\left[\frac{e^{-st}}{-s}\right]_0^\infty+2\left[(t)\cdot\frac{e^{-st}}{-s}\right]-\left[1\cdot \frac{e^{-st}}{s^2}\right]_0^\infty\)
\(=\left[\frac{0-1}{-s}\right]+2\left[(0-0)-(0-\frac{1}{s^2}\right]\)
\(=\frac{1}{s}+\frac{2}{s^2}\)
\(=\frac{s+2}{s^2}\) Thus, \(L(f(t))=\frac{s+2}{s^2}\)
Step 3
b) To find the Laplace transform of \(f(t)=\sin \omega t = \frac{e^{j\omega t}-e^{-j\omega t}}{2j}\)
\(L(f(t))=L(\sin\omega t)\)
\(=\int_0^\infty\sin\omega t \cdot e^{-st}dt\)
\(=\int_0^\infty\frac{e^{j\omega t}-e^{-j\omega t}}{2j} \cdot e^{-st}dt\) \(=\frac{1}{2j}\int_0^\infty e^{(j\omega-s)t}-e^{-(j\omega+s)t}dt\)
\(=\frac{1}{2j}\left[\left(\frac{e^{(j\omega-s)t)}}{j\omega-s}\right)-\left(\frac{e^{-(j\omega+s)t}}{-(j\omega+s)}\right)\right]_0^\infty\)
\(=\frac{1}{2j}\left[\left(\frac{e^{-(s-j\omega)t}}{-(s-j\omega)}\right)-\left(\frac{e^{-(j\omega+s)t}}{-(j\omega+s)}\right)\right]_0^\infty\)
\(=\frac{1}{2j}\left[\frac{0-1}{-(s-j\omega)}-\frac{0-1}{-(j\omega+s)}\right]\)
\(=\frac{1}{2j}\left[\frac{1}{(s-j\omega)}-\frac{1}{(j\omega+s)}\right]\)
\(=\frac{1}{2j}\left[\frac{1}{(s-j\omega)}-\frac{1}{(s+j\omega)}\right]\) \(=\frac{1}{2j}\left[\frac{(s+j\omega)-(s-j\omega)}{(s-j\omega)(s+j\omega)}\right]\)
\(=\frac{\omega}{s^2-(j\omega)^2}\)
\(=\frac{\omega}{s^2+\omega^2}\) Since \(\omega^2=-1\)
\(L(f(t))=\frac{\omega}{(s^2+omega^2)}\)
Step 4
c) To find the Laplace transform of \(f(t)=\sin(2t)+2\cos(2t)+e^{-t}\sin(2t)\)
We have from the Laplace transform table,
\(L(\sin at)=\frac{a}{(s^2+a^2)}\)
\(L(\cos at)=\frac{s}{(s^2+a^2)}\)
\(\text{If } L(f(t))=F(t) \text{ then } L(f(t))=F(s-a)\)
Consider,
\(L(f(t))=L(\sin(2t)+2\cos(2t)+e^{-t}\sin(2t))\)
\(=\frac{2}{(s^2+4)}+2\cdot \frac{s}{(s^2+4)}+\frac{2}{(s+1)^2+4}\)
\(=\frac{2}{(s^2+4)}+\frac{2s}{s^2+4}+\frac{2}{(s^2+2s+5)}\)
Thus, Laplace transform of \(f(t)=\sin(2t)+2\cos(2t)+e^{-t}\sin(2t)\) is \(\frac{2}{s^2+4}+\frac{2s}{s^2+4}+\frac{2}{(s^2+2s+5)}\)
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-06-06
Use the table of Laplace transform and properties to obtain the Laplace transform of the following functions. Specify which transform pair or property is used and write in the simplest form.
a) \(x(t)=\cos(3t)\)
b)\(y(t)=t \cos(3t)\)
c) \(z(t)=e^{-2t}\left[t \cos (3t)\right]\)
d) \(x(t)=3 \cos(2t)+5 \sin(8t)\)
e) \(y(t)=t^3+3t^2\)
f) \(z(t)=t^4e^{-2t}\)
asked 2021-02-19

Use Laplace transform to solve the following initial-value problem
\(y"+2y'+y=0\)
\(y(0)=1, y'(0)=1\)
a) \(\displaystyle{e}^{{-{t}}}+{t}{e}^{{-{t}}}\)
b) \(\displaystyle{e}^{t}+{2}{t}{e}^{t}\)
c) \(\displaystyle{e}^{{-{t}}}+{2}{t}{e}^{t}\)
d) \(\displaystyle{e}^{{-{t}}}+{2}{t}{e}^{{-{t}}}\)
e) \(\displaystyle{2}{e}^{{-{t}}}+{2}{t}{e}^{{-{t}}}\)
f) Non of the above

asked 2021-05-14
Consider the accompanying data on flexural strength (MPa) for concrete beams of a certain type.
\(\begin{array}{|c|c|}\hline 11.8 & 7.7 & 6.5 & 6 .8& 9.7 & 6.8 & 7.3 \\ \hline 7.9 & 9.7 & 8.7 & 8.1 & 8.5 & 6.3 & 7.0 \\ \hline 7.3 & 7.4 & 5.3 & 9.0 & 8.1 & 11.3 & 6.3 \\ \hline 7.2 & 7.7 & 7.8 & 11.6 & 10.7 & 7.0 \\ \hline \end{array}\)
a) Calculate a point estimate of the mean value of strength for the conceptual population of all beams manufactured in this fashion. \([Hint.\ ?x_{j}=219.5.]\) (Round your answer to three decimal places.)
MPa
State which estimator you used.
\(x\)
\(p?\)
\(\frac{s}{x}\)
\(s\)
\(\tilde{\chi}\)
b) Calculate a point estimate of the strength value that separates the weakest \(50\%\) of all such beams from the strongest \(50\%\).
MPa
State which estimator you used.
\(s\)
\(x\)
\(p?\)
\(\tilde{\chi}\)
\(\frac{s}{x}\)
c) Calculate a point estimate of the population standard deviation ?. \([Hint:\ ?x_{i}2 = 1859.53.]\) (Round your answer to three decimal places.)
MPa
Interpret this point estimate.
This estimate describes the linearity of the data.
This estimate describes the bias of the data.
This estimate describes the spread of the data.
This estimate describes the center of the data.
Which estimator did you use?
\(\tilde{\chi}\)
\(x\)
\(s\)
\(\frac{s}{x}\)
\(p?\)
d) Calculate a point estimate of the proportion of all such beams whose flexural strength exceeds 10 MPa. [Hint: Think of an observation as a "success" if it exceeds 10.] (Round your answer to three decimal places.)
e) Calculate a point estimate of the population coefficient of variation \(\frac{?}{?}\). (Round your answer to four decimal places.)
State which estimator you used.
\(p?\)
\(\tilde{\chi}\)
\(s\)
\(\frac{s}{x}\)
\(x\)
asked 2020-12-16
Existence of Laplace Transform
Do the Laplace transforms for the following functions exist? Explain your answers. (You do not need to find the transforms , just show if they exist or not)
a) \(f(t)=t^2\sin(\omega t)\)
b) \(f(t)=e^{t^2}\sin(\omega t)\)
...