# Which pair of numbers is relatively prime? a. 15 and 25 b. 29 and 58 c. 40 and 63 d. 261 and 513 Question
Algebra foundations Which pair of numbers is relatively prime?
a. 15 and 25
b. 29 and 58
c. 40 and 63
d. 261 and 513 2021-02-10
Relatively Prime: Two integers are said to be relatively prime if there is no integer greater than one that divides them both.
(a): Factorization of 15 is 15 = 3 * 5 and the factorization of 25 is
25 = 5 × 5
Since 5 is the common factor in factorization of both the numbers, therefore they are not prime numbers.
(b): Factorization of 29 is 29 = 1 × 29 and the factorization of 58 is 58 = 2 × 29
Since 29 is the common factor in factorization of both the numbers, therefore they are not prime numbers.
(c): Factorization of 40 is 40 = 1 × 2 × 2 × 2 × 5
and the factorization of 63 is 63 = 1 × 3 × 3 × 7
Since in the factorization of both the numbers, there is no common number than one, thus 40 and 63 are prime numbers.
(d): Factorization of 261 is 261 = 3 × 3 × 29
and the factorization of 513 is 513 = 3 × 3 × 3 × 19 Since 3 is the common factor in factorization of both the numbers, therefore they are not prime numbers. Thus, the pair 261 and 513 are not relatively prime.

### Relevant Questions Which pair of numbers is relatively prime?
a. 15 and 25
b. 29 and 58
c. 40 and 63
d. 261 and 513 The article “Anodic Fenton Treatment of Treflan MTF” describes a two-factor experiment designed to study the sorption of the herbicide trifluralin. The factors are the initial trifluralin concentration and the $$\displaystyle{F}{e}^{{{2}}}\ :\ {H}_{{{2}}}\ {O}_{{{2}}}$$ delivery ratio. There were three replications for each treatment. The results presented in the following table are consistent with the means and standard deviations reported in the article. $$\displaystyle{b}{e}{g}\in{\left\lbrace{m}{a}{t}{r}{i}{x}\right\rbrace}\text{Initial Concentration (M)}&\text{Delivery Ratio}&\text{Sorption (%)}\ {15}&{1}:{0}&{10.90}\quad{8.47}\quad{12.43}\ {15}&{1}:{1}&{3.33}\quad{2.40}\quad{2.67}\ {15}&{1}:{5}&{0.79}\quad{0.76}\quad{0.84}\ {15}&{1}:{10}&{0.54}\quad{0.69}\quad{0.57}\ {40}&{1}:{0}&{6.84}\quad{7.68}\quad{6.79}\ {40}&{1}:{1}&{1.72}\quad{1.55}\quad{1.82}\ {40}&{1}:{5}&{0.68}\quad{0.83}\quad{0.89}\ {40}&{1}:{10}&{0.58}\quad{1.13}\quad{1.28}\ {100}&{1}:{0}&{6.61}\quad{6.66}\quad{7.43}\ {100}&{1}:{1}&{1.25}\quad{1.46}\quad{1.49}\ {100}&{1}:{5}&{1.17}\quad{1.27}\quad{1.16}\ {100}&{1}:{10}&{0.93}&{0.67}&{0.80}\ {e}{n}{d}{\left\lbrace{m}{a}{t}{r}{i}{x}\right\rbrace}$$ a) Estimate all main effects and interactions. b) Construct an ANOVA table. You may give ranges for the P-values. c) Is the additive model plausible? Provide the value of the test statistic, its null distribution, and the P-value. The end of the cutting cord on a gas-powered weed cutter is0.15 m in length. If the motor rotates at the rate of 20rev/s, what is the tangential sped of the end of the cord?
a) 628 m/s
b) 25 m/s
c) 19 m/s
d) 63 m/s
e) 75 m/s 1)A rewiew of voted registration record in a small town yielded the dollowing data of the number of males and females registered as Democrat, Republican, or some other affilation: $$\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{G}{e}{n}{d}{e}{r}\backslash{h}{l}\in{e}{A}{f}{f}{i}{l}{a}{t}{i}{o}{n}&{M}{a}\le&{F}{e}{m}{a}\le\backslash{h}{l}\in{e}{D}{e}{m}{o}{c}{r}{a}{t}&{300}&{600}\backslash{R}{e}{p}{u}{b}{l}{i}{c}{a}{n}&{500}&{300}\backslash{O}{t}{h}{e}{r}&{200}&{100}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}$$ What proportion of all voters is male and registered as a Democrat? 2)A survey was conducted invocted involving 303 subject concerning their preferences with respect to the size of car thay would consider purchasing. The following table shows the count of the responses by gender of the respondents: $$\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{S}{i}{z}{e}\ {o}{f}\ {C}{a}{r}\backslash{h}{l}\in{e}{G}{e}{n}{d}{e}{r}&{S}{m}{a}{l}{l}&{M}{e}{d}{i}{u}{m}&{l}{a}{n}\ge&{T}{o}{t}{a}{l}\backslash{h}{l}\in{e}{F}{e}{m}{a}\le&{58}&{63}&{17}&{138}\backslash{M}{a}\le&{79}&{61}&{25}&{165}\backslash{T}{o}{t}{a}{l}&{137}&{124}&{42}&{303}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}$$ the data are to be summarized by constructing marginal distributions. In the marginal distributio for car size, the entry for mediums car is ? The reaction Br2+CH3BrCH2Br2+HBrwas carried out. Which of the following mechanism steps is bothproductive and relatively likely to occur?
a. Br. + .CH2BrCH2Br2
b. Br.+.CH3CH3Br
c. Br.+Br2Br2+Br.
d. Br.+CH3BrHBr+.CH2Br
I don't know how to do this. Plz someone help me. Which of the following fractions are repeating decimals and which are terminating? How made decisions? $$a) \frac{2}{15}$$
$$b)\frac{11}{20}$$
$$c)\frac{17}{40}$$
$$d)\frac{1}{12}$$ At what age do babies learn to crawl? Does it take longer to learn in the winter when babies are often bundled in clothes that restrict their movement? Data were collected from parents who brought their babies into the University of Denver Infant Study Center to participate in one of a number of experiments between 1988 and 1991. Parents reported the birth month and the age at which their child was first able to creep or crawl a distance of 4 feet within 1 minute. The resulting data were grouped by month of birth: January, May, and September: $$\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}&{C}{r}{a}{w}{l}\in{g}\ {a}\ge\backslash{h}{l}\in{e}{B}{i}{r}{t}{h}\ {m}{o}{n}{t}{h}&{M}{e}{a}{n}&{S}{t}.{d}{e}{v}.&{n}\backslash{h}{l}\in{e}{J}{a}\nu{a}{r}{y}&{29.84}&{7.08}&{32}\backslash{M}{a}{y}&{28.58}&{8.07}&{27}\backslash{S}{e}{p}{t}{e}{m}{b}{e}{r}&{33.83}&{6.93}&{38}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}$$ Crawling age is given in weeks. Assume the data represent three independent simple random samples, one from each of the three populations consisting of babies born in that particular month, and that the populations of crawling ages have Normal distributions. A partial ANOVA table is given below. $$\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{S}{o}{u}{r}{c}{e}&{S}{u}{m}\ {o}{f}\ \boxempty{s}&{D}{F}&{M}{e}{a}{n}\ \boxempty\ {F}\backslash{h}{l}\in{e}{G}{r}{o}{u}{p}{s}&{505.26}\backslash{E}{r}{r}{\quad\text{or}\quad}&&&{53.45}\backslash{T}{o}{t}{a}{l}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}$$ What are the degrees of freedom for the groups term? Determine the algebraic modeling which of the following data sets are linear and which are exponential. For the linear sets, determine the slope. For the exponential sets, determine the growth factor or the decay factor
a) $$\begin{array}{|c|c|}\hline x & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline y & \frac{1}{9} & \frac{1}{3} & 1 & 3 & 9 & 27 & 81 \\ \hline \end{array}$$ b) $$\begin{array}{|c|c|}\hline x & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline y & 2 & 2.6 & 3.2 & 3.8 & 4.4 & 5.0 & 5.6 \\ \hline \end{array}$$
c) $$\begin{array}{|c|c|}\hline x & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline y & 3.00 & 5.0 & 7 & 9 & 11 & 13 & 15 \\ \hline \end{array}$$
d) $$\begin{array}{|c|c|}\hline x & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline y & 5.25 & 2.1 & 0.84 & 0.336 & 0.1344 & 0.5376 & 0.021504 \\ \hline \end{array}$$ $$\begin{array}{c|cc|c} & \text { Female } & \text { Male } & \text { Total } \\ \hline \text{ Yes } & 19 & 15 & 34 \\ \text{ No } & 24 & 30 & 54 \\ \hline \text{ Total } & 43 & 45 & 88\\ \end{array}\$$
$$(a)\frac{19}{88}$$ 