Question

Random variable x represent the number of girls in a family of four children. 1) Construct a table describing the probability distribution, then find

Random variables
ANSWERED
asked 2020-11-01
Random variable x represent the number of girls in a family of four children.
1) Construct a table describing the probability distribution, then find the mean and standard deviation. (Hint: List the different possible outcomes.)
2) Is it unusual for a family of four children to consist of four girls?

Answers (1)

2020-11-02
1) The possibilities are (B=Boy and G=Girl): BBBB, BBBG, BBGB, BBGG, BGBB, BGBG, BGGB, BGGG, GBBB, GBBG, GBGB, GBGG, GGB, GGBG, GGGB, GGGG Every outcome has an equal chance. Let X be the number of girls:
X - Probability
0 - 0.0625
1 - 0.25
2 - 0.375
3 - 0.25
4 - 0.0625
2) The meanis the sum of the product x and the probabilities of x:
\(\mu = \sum P(X) = 0 * 0.625 + 1 * 0.25 + 2 * 0.375 + 3 * 0.25 + 4 * 0.0625 = 2\)
The standard deviation is the square root of the sum of the squared deviations multiplied by the probability:
\(\sigma = \sqrt{\sigma(x-\mu)^{2}P(X)} = \sqrt{(0-2)^{2}*0.0625 +...+(4-2)^{2} *0.0625} = 2\)
It is unusual to get 4 girls, because 4 is standard deviations from the mean.
Result: \(\mu = 2,\ \sigma = 1,\ Unusual\)
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-05-26
Random variables \(X_{1},X_{2},...,X_{n}\) are independent and identically distributed. 0 is a parameter of their distribution.
If \(X_{1}, X_{2},...,X_{n}\) are Normally distributed with unknown mean 0 and standard deviation 1, then \(\overline{X} \sim N(\frac{0,1}{n})\). Use this result to obtain a pivotal function of X and 0.
asked 2021-07-02
An investor plans to put $50,000 in one of four investments. The return on each investment depends on whether next year’s economy is strong or weak. The following table summarizes the possible payoffs, in dollars, for the four investments.
Certificate of deposit
Office complex
Land speculation
Technical school
amp; Strong amp;6,000 amp;15,000 amp;33,000 amp;5,500
amp; Weak amp;6,000 amp;5,000 amp;−17,000 amp;10,000
Let V, W, X, and Y denote the payoffs for the certificate of deposit, office complex, land speculation, and technical school, respectively. Then V, W, X, and Y are random variables. Assume that next year’s economy has a 40% chance of being strong and a 60% chance of being weak. a. Find the probability distribution of each random variable V, W, X, and Y. b. Determine the expected value of each random variable. c. Which investment has the best expected payoff? the worst? d. Which investment would you select? Explain.
asked 2021-05-14
When σ is unknown and the sample size is \(\displaystyle{n}\geq{30}\), there are tow methods for computing confidence intervals for μμ. Method 1: Use the Student's t distribution with d.f. = n - 1. This is the method used in the text. It is widely employed in statistical studies. Also, most statistical software packages use this method. Method 2: When \(\displaystyle{n}\geq{30}\), use the sample standard deviation s as an estimate for σσ, and then use the standard normal distribution. This method is based on the fact that for large samples, s is a fairly good approximation for σσ. Also, for large n, the critical values for the Student's t distribution approach those of the standard normal distribution. Consider a random sample of size n = 31, with sample mean x¯=45.2 and sample standard deviation s = 5.3. (c) Compare intervals for the two methods. Would you say that confidence intervals using a Student's t distribution are more conservative in the sense that they tend to be longer than intervals based on the standard normal distribution?
asked 2021-05-14
Consider the accompanying data on flexural strength (MPa) for concrete beams of a certain type.
\(\begin{array}{|c|c|}\hline 11.8 & 7.7 & 6.5 & 6 .8& 9.7 & 6.8 & 7.3 \\ \hline 7.9 & 9.7 & 8.7 & 8.1 & 8.5 & 6.3 & 7.0 \\ \hline 7.3 & 7.4 & 5.3 & 9.0 & 8.1 & 11.3 & 6.3 \\ \hline 7.2 & 7.7 & 7.8 & 11.6 & 10.7 & 7.0 \\ \hline \end{array}\)
a) Calculate a point estimate of the mean value of strength for the conceptual population of all beams manufactured in this fashion. \([Hint.\ ?x_{j}=219.5.]\) (Round your answer to three decimal places.)
MPa
State which estimator you used.
\(x\)
\(p?\)
\(\frac{s}{x}\)
\(s\)
\(\tilde{\chi}\)
b) Calculate a point estimate of the strength value that separates the weakest \(50\%\) of all such beams from the strongest \(50\%\).
MPa
State which estimator you used.
\(s\)
\(x\)
\(p?\)
\(\tilde{\chi}\)
\(\frac{s}{x}\)
c) Calculate a point estimate of the population standard deviation ?. \([Hint:\ ?x_{i}2 = 1859.53.]\) (Round your answer to three decimal places.)
MPa
Interpret this point estimate.
This estimate describes the linearity of the data.
This estimate describes the bias of the data.
This estimate describes the spread of the data.
This estimate describes the center of the data.
Which estimator did you use?
\(\tilde{\chi}\)
\(x\)
\(s\)
\(\frac{s}{x}\)
\(p?\)
d) Calculate a point estimate of the proportion of all such beams whose flexural strength exceeds 10 MPa. [Hint: Think of an observation as a "success" if it exceeds 10.] (Round your answer to three decimal places.)
e) Calculate a point estimate of the population coefficient of variation \(\frac{?}{?}\). (Round your answer to four decimal places.)
State which estimator you used.
\(p?\)
\(\tilde{\chi}\)
\(s\)
\(\frac{s}{x}\)
\(x\)
...