# A meteorologist preparing a talk about global warming compiled a list of weekly low temperatures (in degree s Fahrenheit) he observed at his southern Florida home last year. The coldest temperature for any week was 36°F, but he inadvertently recorded the Celsius value of 2°. Assuming that he correctly listed all the other temperatures, explain how this error will affect these summary statistics: a) measures of center: mean and median. b) measures of spread: range, IQR, and standard deviation.

Question
Binomial probability
A meteorologist preparing a talk about global warming compiled a list of weekly low temperatures (in degree s Fahrenheit) he observed at his southern Florida home last year. The coldest temperature for any week was 36°F, but he inadvertently recorded the Celsius value of 2°. Assuming that he correctly listed all the other temperatures, explain how this error will affect these summary statistics:
a) measures of center: mean and median. b) measures of spread: range, IQR, and standard deviation.

2020-11-28
a) The median will remain unchanged, while the mean will decrease. Because the lowest value decreased and the median is not influenced by one outlier while the mean is influenced by it.
b) The range and standard deviation will increase, while the IQR remains unchanged. Because the IQR is unaffected by an outlier, while the range and standard deviation are influenced by it.
Result: a) Median unchanged, mean decreases
b) Range and standard deviation increase, IQR unchanged

### Relevant Questions

True or False
1.The goal of descriptive statistics is to simplify, summarize, and organize data.
2.A summary value, usually numerical, that describes a sample is called a parameter.
3.A researcher records the average age for a group of 25 preschool children selected to participate in a research study. The average age is an example of a statistic.
4.The median is the most commonly used measure of central tendency.
5.The mode is the best way to measure central tendency for data from a nominal scale of measurement.
6.A distribution of scores and a mean of 55 and a standard deviation of 4. The variance for this distribution is 16.
7.In a distribution with a mean of M = 36 and a standard deviation of SD = 8, a score of 40 would be considered an extreme value.
8.In a distribution with a mean of M = 76 and a standard deviation of SD = 7, a score of 91 would be considered an extreme value.
9.A negative correlation means that as the X values decrease, the Y values also tend to decrease.
10.The goal of a hypothesis test is to demonstrate that the patterns observed in the sample data represent real patterns in the population and are not simply due to chance or sampling error.
In 1985, neither Florida nor Georgia had laws banning open alcohol containers in vehicle passenger compartments. By 1990, Florida had passed such a law, but Georgia had not.
(i) Suppose you can collect random samples of the driving-age population in both states, for 1985 and 1990. Let arrest be a binary variable equal to unity if a person was arrested for drunk driving during the year. Without controlling for any other factors, write down a linear probability model that allows you to test whether the open container law reduced the probability of being arrested for drunk driving. Which coefficient in your model measures the effect of the law?
(ii) Why might you want to control for other factors in the model? What might some of these factors be?
(iii) Now, suppose that you can only collect data for 1985 and 1990 at the county level for the two states. The dependent variable would be the fraction of licensed drivers arrested for drunk driving during the year. How does this data structure differ from the individual-level data described in part (i)? What econometric method would you use?
Geographical Analysis (Oct. 2006) published a study of a new method for analyzing remote-sensing data from satellite pixels in order to identify urban land cover. The method uses a numerical measure of the distribution of gaps, or the sizes of holes, in the pixel, called lacunarity. Summary statistics for the lacunarity measurements in a sample of 100 grassland pixels are x¯=225 and s=20s=20. It is known that the mean lacunarity measurement for all grassland pixels is 220. The method will be effective in identifying land cover if the standard deviation of the measurements is 10% (or less) of the true mean (i.e., if the standard deviation is less than 22). a. Give the null and alternative hypotheses for a test to determine whether, in fact, the standard deviation of all grassland pixels is less than 22. b. A MINITAB analysis of the data is provided below. Locate and interpret the p-value of the test. Use α=.10α=.10. Test for One Standard Deviation Method Null hypothesisSigma = 22 Method Alternative hypothesisSigma = < 22 The standard method is only for the normal distribution. Statistics NStDevVariance 10020.0400 Tests
The table below shows the number of people for three different race groups who were shot by police that were either armed or unarmed. These values are very close to the exact numbers. They have been changed slightly for each student to get a unique problem.
Suspect was Armed:
Black - 543
White - 1176
Hispanic - 378
Total - 2097
Suspect was unarmed:
Black - 60
White - 67
Hispanic - 38
Total - 165
Total:
Black - 603
White - 1243
Hispanic - 416
Total - 2262
Give your answer as a decimal to at least three decimal places.
a) What percent are Black?
b) What percent are Unarmed?
c) In order for two variables to be Independent of each other, the P $$(A and B) = P(A) \cdot P(B) P(A and B) = P(A) \cdot P(B).$$
This just means that the percentage of times that both things happen equals the individual percentages multiplied together (Only if they are Independent of each other).
Therefore, if a person's race is independent of whether they were killed being unarmed then the percentage of black people that are killed while being unarmed should equal the percentage of blacks times the percentage of Unarmed. Let's check this. Multiply your answer to part a (percentage of blacks) by your answer to part b (percentage of unarmed).
Remember, the previous answer is only correct if the variables are Independent.
d) Now let's get the real percent that are Black and Unarmed by using the table?
If answer c is "significantly different" than answer d, then that means that there could be a different percentage of unarmed people being shot based on race. We will check this out later in the course.
Let's compare the percentage of unarmed shot for each race.
e) What percent are White and Unarmed?
f) What percent are Hispanic and Unarmed?
If you compare answers d, e and f it shows the highest percentage of unarmed people being shot is most likely white.
Why is that?
This is because there are more white people in the United States than any other race and therefore there are likely to be more white people in the table. Since there are more white people in the table, there most likely would be more white and unarmed people shot by police than any other race. This pulls the percentage of white and unarmed up. In addition, there most likely would be more white and armed shot by police. All the percentages for white people would be higher, because there are more white people. For example, the table contains very few Hispanic people, and the percentage of people in the table that were Hispanic and unarmed is the lowest percentage.
Think of it this way. If you went to a college that was 90% female and 10% male, then females would most likely have the highest percentage of A grades. They would also most likely have the highest percentage of B, C, D and F grades
The correct way to compare is "conditional probability". Conditional probability is getting the probability of something happening, given we are dealing with just the people in a particular group.
g) What percent of blacks shot and killed by police were unarmed?
h) What percent of whites shot and killed by police were unarmed?
i) What percent of Hispanics shot and killed by police were unarmed?
You can see by the answers to part g and h, that the percentage of blacks that were unarmed and killed by police is approximately twice that of whites that were unarmed and killed by police.
j) Why do you believe this is happening?
Do a search on the internet for reasons why blacks are more likely to be killed by police. Read a few articles on the topic. Write your response using the articles as references. Give the websites used in your response. Your answer should be several sentences long with at least one website listed. This part of this problem will be graded after the due date.
1. Find each of the requested values for a population with a mean of $$? = 40$$, and a standard deviation of $$? = 8$$ A. What is the z-score corresponding to $$X = 52?$$ B. What is the X value corresponding to $$z = - 0.50?$$ C. If all of the scores in the population are transformed into z-scores, what will be the values for the mean and standard deviation for the complete set of z-scores? D. What is the z-score corresponding to a sample mean of $$M=42$$ for a sample of $$n = 4$$ scores? E. What is the z-scores corresponding to a sample mean of $$M= 42$$ for a sample of $$n = 6$$ scores? 2. True or false: a. All normal distributions are symmetrical b. All normal distributions have a mean of 1.0 c. All normal distributions have a standard deviation of 1.0 d. The total area under the curve of all normal distributions is equal to 1 3. Interpret the location, direction, and distance (near or far) of the following zscores: $$a. -2.00 b. 1.25 c. 3.50 d. -0.34$$ 4. You are part of a trivia team and have tracked your team’s performance since you started playing, so you know that your scores are normally distributed with $$\mu = 78$$ and $$\sigma = 12$$. Recently, a new person joined the team, and you think the scores have gotten better. Use hypothesis testing to see if the average score has improved based on the following 8 weeks’ worth of score data: $$82, 74, 62, 68, 79, 94, 90, 81, 80$$. 5. You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are $42 on average but vary about $$12 (\mu = 42, \sigma = 12)$$. You decide to track your tips to see if you make a different amount, but because this is your first job as a server, you don’t know if you will make more or less in tips. After working 16 shifts, you find that your average nightly amount is$44.50 from tips. Test for a difference between this value and the population mean at the $$\alpha = 0.05$$ level of significance.
Using the daily high and low temperature readings at Chicago's O'Hare International Airport for an entire year, a meteorologist made a scatterplot relating y = high temperature to x = low temperature, both in degrees Fahrenheit.
After verifying that the conditions for the regression model were met, the meteorologist calculated the equation of the population regression line to be $$\displaystyle{\left[\mu_{{y}}={16.6}+{1.02}\right]}{w}{i}{t}{h}{\left[\sigma={6.6}+^{\circ}{F}\right]}$$.
About what percent of days with a low temperature of $$\displaystyle{40}^{\circ}$$ F?
Using the daily high and low temperature readings at Chicago's O'Hare International Airport for an entire year, a meteorologist made a scatterplot relating y = high temperature to x = low temperature, both in degrees Fahrenheit.
After verifying that the conditions for the regression model were met, the meteorologist calculated the equation of the population regression line to be $$\displaystyle{\left[\mu_{{y}}={16.6}+{1.02}\right]}{w}{i}{t}{h}{\left[\sigma={6.6}+^{\circ}{F}\right]}$$.
About what percent of days with a low temperature of $$\displaystyle{40}^{\circ}$$ F have a high temperature greater than $$\displaystyle{70}^{\circ}$$ F?
Juan makes a measurement in a chemistry laboratory and records the result in his lab report. The stardard deviation of lab measurements made by students is $$\sigma=10$$ milligrams. Juan repeats the measurement 3 times and records the mean xbar of his 3 measurements.
Iron is very important for babies' growth. A common belief is that breastfeeding will help the baby to get more iron than formula feeding. To justify the belief, a study followed 2 groups of babies from born to 6 months. With one group babies are breast fed, and the other group are formula fed without iron supplements. Data below shows iron levels of those two groups of babies. $$\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}{G}{r}{o}{u}{p}&{S}{a}\mp\le\ {s}{i}{z}{e}&{m}{e}{a}{n}&{S}{\tan{{d}}}{a}{r}{d}\ {d}{e}{v}{i}{a}{t}{i}{o}{n}\backslash{h}{l}\in{e}{B}{r}{e}\ast-{f}{e}{d}&{23}&{13.3}&{1.7}\backslash{h}{l}\in{e}{F}{\quad\text{or}\quad}\mu{l}{a}-{f}{e}{d}&{23}&{12.4}&{1.8}\backslash{h}{l}\in{e}{D}{I}{F}{F}={B}{r}{e}\ast-{F}{\quad\text{or}\quad}\mu{l}{a}&{23}&{0.9}&{1.4}\backslash{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}$$ (1) There are two groups we need to compare for the study: Breast-Fed and Formula- Fed. Are those two groups dependent or independent? Based on your answer, what inference procedure should we apply for this research? (2) Please perform the inference you decided in (1), and make sure to follow the 5-step procedure for any hypothesis test. (3) Based on your conclusion in (2), what kind of error could you make? Explain the type of error using the context words for this research