Evaluate the line integral, where C is the given curve

${\int}_{C}\left(\frac{x}{y}\right)ds,C:x={t}^{3},y={t}^{4},1\le t\le 4$

Ava-May Nelson
2021-09-17
Answered

Evaluate the line integral, where C is the given curve

${\int}_{C}\left(\frac{x}{y}\right)ds,C:x={t}^{3},y={t}^{4},1\le t\le 4$

You can still ask an expert for help

Nichole Watt

Answered 2021-09-18
Author has **100** answers

To evaluate:

asked 2021-02-24

asked 2021-05-11

Evaluate the line integral, where C is the given curve

C xy ds

C:$x={t}^{2},y=2t,0\le t\le 5$

C xy ds

C:

asked 2022-05-15

Compute the volume enclosed by the surface

${(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}+\frac{{z}^{2}}{{c}^{2}})}^{2}=\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-\frac{{z}^{2}}{{c}^{2}}.$

${(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}+\frac{{z}^{2}}{{c}^{2}})}^{2}=\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-\frac{{z}^{2}}{{c}^{2}}.$

asked 2021-11-13

Calculate this triple integral over D:

$\int \int \int \sqrt{10+{y}^{2}-{x}^{2}}dxdydz$

over the region bounded D:

$D=\{(x,y,z)\mid {x}^{2}+{z}^{2}\le {y}^{2}+10,\text{}{x}^{2}+{y}^{2}\le 9\}$

over the region bounded D:

asked 2021-08-17

asked 2021-09-07

Evaluate the integral by reversing the order of integration

${\int}_{0}^{1}{\int}_{3y}^{3}{e}^{{x}^{2}}dxdy$

asked 2022-05-11

Find the integral: $\int \frac{{e}^{t}}{\sqrt{{e}^{2t}+4}}dt$.