Ask question

# A sample of 51 research cotton samples resulted in a sample average percentage elongation of 8.19 and a sample standard deviation of 1.45. Calculate a 95% large-sample CI for the true average # A sample of 51 research cotton samples resulted in a sample average percentage elongation of 8.19 and a sample standard deviation of 1.45. Calculate a 95% large-sample CI for the true average

Question
Confidence intervals asked 2021-03-06

A sample of 51 research cotton samples resulted in a sample average percentage elongation of 8.19 and a sample standard deviation of 1.45. Calculate a $$95\%$$ large-sample CI for the true average percentage elongation $$\mu$$ (Round your answer to three decimal places.)

## Answers (1) 2021-03-07
Step 1
Given that
Sample size, $$\displaystyle{n}={51}$$
Sample mean $$\displaystyle\overline{{x}}={8.19}$$
Sample standard deviation, $$\displaystyle{s}={1.45}$$
The objective is to construct $$95\%$$ large-sample confidence intervals for the true average elongation $$\displaystyle\mu$$.
The confidence level is,
$$\displaystyle{C}={95}\%=\frac{95}{{100}}={0.95}$$
The level of significance is,
$$\displaystyle\alpha={1}-{C}={1}-{0.95}={0.05}$$
From standard normal table, at 0.05 level of significance the two-tailed critical value is,
$$\displaystyle{z}_{{\alpha\text{/}{2}}}={z}_{{{0.05}\text{/}{2}}}={1.96}$$
Step 2
The confidence interval is computed below.
$$\displaystyle\overline{{x}}\pm{z}_{{\alpha\text{/}{2}}}{\left(\frac{s}{\sqrt{{n}}}\right)}$$
$$\displaystyle{8.19}\pm{z}_{{{0.05}\text{/}{2}}}{\left(\frac{1.45}{\sqrt{{51}}}\right)}$$
$$\displaystyle{8.19}\pm{1.96}{\left({0.2030}\right)}$$
$$\displaystyle{8.19}\pm{0.39788}$$
$$\displaystyle{\left({8.19}-{0.39788},{8.19}+{0.39788}\right)}$$
$$\displaystyle{\left({7.79212},{8.58788}\right)}$$
$$\displaystyle{\left({7.792},{8.588}\right)}$$ (rounded to three decimals)

### Relevant Questions asked 2020-11-10

Here is a sample of amounts of weight change (kg) of college students in their freshman year: 10, 7, 6, -7, where -7 represents a loss of 7 kg and positive values represent weight gained. Here are ten bootstrap samples: $$\displaystyle{\left\lbrace{10},{10},{10},{6}\right\rbrace},{\left\lbrace{10},-{7},{6},{10}\right\rbrace},{\left\lbrace{10},-{7},{7},{6}\right\rbrace},{\left\lbrace{7},-{7},{6},{10}\right\rbrace},{\left\lbrace{6},{6},{6},{7}\right\rbrace},{\left\lbrace{7},-{7},{7},-{7}\right\rbrace},{\left\lbrace{10},{7},-{7},{6}\right\rbrace},{\left\lbrace-{7},{7},-{7},{7}\right\rbrace},{\left\lbrace-{7},{6},-{7},{7}\right\rbrace},{\left\lbrace{7},{10},{10},{10}\right\rbrace}$$. a) Using only the ten given bootstrap samples, construct an 80% confidence interval estimate of the mean weight change for the population. $$\displaystyle?{k}{g}{<}{m}{y}{<}?{k}{g}$$ asked 2021-02-12

What is the optimal time for a scuba diver to be on the bottom of the ocean? That depends on the depth of the dive. The U.S. Navy has done a lot of research on this topic. The Navy defines the "optimal time" to be the time at each depth for the best balance between length of work period and decompression time after surfacing. Let $$\displaystyle{x}=$$ depth of dive in meters, and let $$\displaystyle{y}=$$ optimal time in hours. A random sample of divers gave the following data.
$$\begin{array}{|c|c|} \hline x & 13.1 & 23.3 & 31.2 & 38.3 & 51.3 &20.5 & 22.7 \\ \hline y & 2.78 & 2.18 & 1.48 & 1.03 & 0.75 & 2.38 & 2.20 \\ \hline \end{array}$$
(a)
Find $$\displaystyleΣ{x},Σ{y},Σ{x}^{2},Σ{y}^{2},Σ{x}{y},{\quad\text{and}\quad}{r}$$. (Round r to three decimal places.)
$$\displaystyleΣ{x}=$$
$$\displaystyleΣ{y}=$$
$$\displaystyleΣ{x}^{2}=$$
$$\displaystyleΣ{y}^{2}=$$
$$\displaystyleΣ{x}{y}=$$
$$\displaystyle{r}=$$
(b)
Use a $$1\%$$ level of significance to test the claim that $$\displaystyle\rho<{0}$$. (Round your answers to two decimal places.)
$$\displaystyle{t}=$$
critical $$\displaystyle{t}=$$
Conclusion
Reject the null hypothesis. There is sufficient evidence that $$\displaystyle\rho<{0}$$.Reject the null hypothesis. There is insufficient evidence that $$\displaystyle\rho<{0}$$.
Fail to reject the null hypothesis. There is sufficient evidence that $$\displaystyle\rho<{0}$$.Fail to reject the null hypothesis. There is insufficient evidence that $$\displaystyle\rho<{0}.$$
(c)
Find $$\displaystyle{S}_{{e}},{a},{\quad\text{and}\quad}{b}$$. (Round your answers to four decimal places.)
$$\displaystyle{S}_{{e}}=$$
$$\displaystyle{a}=$$
$$\displaystyle{b}=$$ asked 2021-03-05
A CI is desired for the true average stray-load loss A (watts) for a certain type of induction motor when the line current is heldat 10 amps for a speed of 1500 rpm. Assume that stray-load loss isnormally distributed with A = 3.0.
In this problem part (a) wants you to compute a 95% CI for A when n =25 and the sample mean = 58.3. asked 2021-01-17

American automobiles produced in 2012 and classified as “large”; had a mean fuel economy of 19.6 miles per gallon with a standard deviation of 3.36 miles per gallon. A particular model on this list was rated at 23 miles per gallon, giving it a z-score of about 1.01. Which statement is true based on this information?

A) Because the standard deviation is small compared to the mean, a Normal model is appropriate and we can say that about $$84.4\%$$ of of large automobiles have a fuel economy of 23 miles per gallon or less. asked 2021-02-23
1. A researcher is interested in finding a 98% confidence interval for the mean number of times per day that college students text. The study included 144 students who averaged 44.7 texts per day. The standard deviation was 16.5 texts. a. To compute the confidence interval use a ? z t distribution. b. With 98% confidence the population mean number of texts per day is between and texts. c. If many groups of 144 randomly selected members are studied, then a different confidence interval would be produced from each group. About percent of these confidence intervals will contain the true population number of texts per day and about percent will not contain the true population mean number of texts per day. 2. You want to obtain a sample to estimate how much parents spend on their kids birthday parties. Based on previous study, you believe the population standard deviation is approximately $$\displaystyle\sigma={40.4}$$ dollars. You would like to be 90% confident that your estimate is within 1.5 dollar(s) of average spending on the birthday parties. How many parents do you have to sample? n = 3. You want to obtain a sample to estimate a population mean. Based on previous evidence, you believe the population standard deviation is approximately $$\displaystyle\sigma={57.5}$$. You would like to be 95% confident that your estimate is within 0.1 of the true population mean. How large of a sample size is required? asked 2020-12-24
True or False
1.The goal of descriptive statistics is to simplify, summarize, and organize data.
2.A summary value, usually numerical, that describes a sample is called a parameter.
3.A researcher records the average age for a group of 25 preschool children selected to participate in a research study. The average age is an example of a statistic.
4.The median is the most commonly used measure of central tendency.
5.The mode is the best way to measure central tendency for data from a nominal scale of measurement.
6.A distribution of scores and a mean of 55 and a standard deviation of 4. The variance for this distribution is 16.
7.In a distribution with a mean of M = 36 and a standard deviation of SD = 8, a score of 40 would be considered an extreme value.
8.In a distribution with a mean of M = 76 and a standard deviation of SD = 7, a score of 91 would be considered an extreme value.
9.A negative correlation means that as the X values decrease, the Y values also tend to decrease.
10.The goal of a hypothesis test is to demonstrate that the patterns observed in the sample data represent real patterns in the population and are not simply due to chance or sampling error. asked 2021-02-06
You may need to use the appropriate appendix table or technology to answer this question.
Money reports that the average annual cost of the first year of owning and caring for a large dog in 2017 is $1,448. The Irish Red and White Setter Association of America has requested a study to estimate the annual first-year cost for owners of this breed. A sample of 50 will be used. Based on past studies, the population standard deviation is assumed known with $$\displaystyle\sigma=\{230}.$$ $$\begin{matrix} 1,902 & 2,042 & 1,936 & 1,817 & 1,504 & 1,572 & 1,532 & 1,907 & 1,882 & 2,153 \\ 1,945 & 1,335 & 2,006 & 1,516 & 1,839 & 1,739 & 1,456 & 1,958 & 1,934 & 2,094 \\ 1,739 & 1,434 & 1,667 & 1,679 & 1,736 & 1,670 & 1,770 & 2,052 & 1,379 & 1,939\\ 1,854 & 1,913 & 2,163 & 1,737 & 1,888 & 1,737 & 2,230 & 2,131 & 1,813 & 2,118\\ 1,978 & 2,166 & 1,482 & 1,700 & 1,679 & 2,060 & 1,683 & 1,850 & 2,232 & 2,294 \end{matrix}$$ (a) What is the margin of error for a $$95\%$$ confidence interval of the mean cost in dollars of the first year of owning and caring for this breed? (Round your answer to nearest cent.) (b) The DATAfile Setters contains data collected from fifty owners of Irish Setters on the cost of the first year of owning and caring for their dogs. Use this data set to compute the sample mean. Using this sample, what is the $$95\%$$ confidence interval for the mean cost in dollars of the first year of owning and caring for an Irish Red and White Setter? (Round your answers to nearest cent.)$_______ to \$________ asked 2021-02-24
Construct a 95% confidence interval for the true average monthly salary earned by all employees of People Plus Pty, if it was found that the average monthly salary earned by a sample of 19 employees of the company was R18 500, with a standard deviation of R1 750. Interpret your answer asked 2021-02-09
The service life in kilometer of Goody tires is assumed to follow a normal distribution with a standard deviation of 5,000 km. A random sample of 25 tires yielded a mean service life of 30,000 km. 1) Find the $$\displaystyle{95}\%$$ confidence interval for the true mean service life. 2) 2. Find a $$\displaystyle{75}\%$$ confidence interval for the true mean service life. 3) Calculate the widths of the intervals found in 1 and 2. How do these widths change as the confidence level decreases? asked 2020-11-08
A hybrid course is one that contains both online and classroom instruction. In a study performed at Middle Georgia State University, a software package was used as the main souce of instruction in a hybrid college algebra course. The software tracked the number of hours it took for each student to meet the objectives of the course. In a sample of 45 students, the mean number of hours was 80.5, with a standard deviation of 51.2.
a. Construct a 95% confidence interval for the mean number of hours it takes for a student to meet the course objectives.
...