# Give the correct answer and solve the given equation: displaystyle{x}{y}{left.{d}{x}right.}-{left({y}+{2}right)}{left.{d}{y}right.}={0} Question
Differential equations Give the correct answer and solve the given equation:
$$\displaystyle{x}{y}{\left.{d}{x}\right.}-{\left({y}+{2}\right)}{\left.{d}{y}\right.}={0}$$ 2020-12-06
We have to find the solution for the given differential equation
$$\displaystyle{a}{y}{\left.{d}{x}\right.}={\left({y}+{2}\right)}{\left.{d}{y}\right.}.$$
We can separate the variables.
So,
$$\displaystyle{x}{y}{\left.{d}{x}\right.}={\left({y}+{2}\right)}{\left.{d}{y}\right.}$$
$$\displaystyle\Rightarrow{\left(\frac{{{y}+{2}}}{{y}}\right)}{\left.{d}{y}\right.}={x}{\left.{d}{x}\right.}$$
Integrating both sides we get,
$$\displaystyle\int{\left(\frac{{{y}+{2}}}{{y}}\right)}{\left.{d}{y}\right.}\int{x}{\left.{d}{x}\right.}$$
$$\displaystyle\Rightarrow\int{\left({1}+\frac{2}{{y}}\right)}{\left.{d}{y}\right.}=\int{x}{\left.{d}{x}\right.}$$
$$\displaystyle\Rightarrow{\left.{d}{y}\right.}+\int{\left(\frac{2}{{y}}\right)}{\left.{d}{y}\right.}=\int{x}{\left.{d}{x}\right.}$$
$$\displaystyle\Rightarrow\int{\left.{d}{y}\right.}+{2}\int\frac{{\left.{d}{y}\right.}}{{y}}=\int{x}{\left.{d}{x}\right.}$$
$$\displaystyle\Rightarrow{y}+{2} \log{{\left({y}\right)}}=\frac{{{x}^{2}}}{{2}}+{C}$$, where C is a constant of integration.
Hence, the solution of the given differential equation is,
$$\displaystyle{y}+{2} \log{{\left({y}\right)}}=\frac{{{x}^{2}}}{{2}}+{C}$$, C is a constant

### Relevant Questions Give the correct answer and solve the given equation: $$\displaystyle{y}\ \text{ - 4y}+{3}{y}={x},{y}_{{1}}={e}^{x}$$ Give the correct answer and solve the given equation $$\displaystyle{\left({x}-{y}\right)}{\left.{d}{x}\right.}+{\left({3}{x}+{y}\right)}{\left.{d}{y}\right.}={0},\text{when}\ {x}={3},{y}=-{2}$$ Give the correct answer and solve the given equation
$$\displaystyle{\left({x}+{y}\right)}{\left.{d}{x}\right.}+{\left({x}-{y}\right)}{\left.{d}{y}\right.}={0}$$ Find the general solution to the equation $$\displaystyle{x}{\left(\frac{{\left.{d}{y}\right.}}{{\left.{d}{x}\right.}}\right)}+{3}{\left({y}+{x}^{2}\right)}=\frac{{ \sin{{x}}}}{{x}}$$ Give the correct answer and solve the given equation $$\displaystyle\frac{{\left.{d}{y}\right.}}{{\left.{d}{x}\right.}}=\frac{{{y}^{2}-{1}}}{{{x}^{2}-{1}}},{y}{\left({2}\right)}={2}$$ Give the correct answer and solve the given equation
Let $$\displaystyle{p}{\left({x}\right)}={2}+{x}{\quad\text{and}\quad}{q}{\left({x}\right)}={x}$$. Using the inner product $$\langle\ p,\ q\rangle=\int_{-1}^{1}pqdx$$ find all polynomials $$\displaystyle{r}{\left({x}\right)}={a}+{b}{x}\in{P}{1}{\left({R}\right)}{P}$$
(R) such that {p(x), q(x), r(x)} is an orthogonal set. Give the correct answer and solve the given equation Evaluate $$\displaystyle\int{x}^{3}{\left({\sqrt[{3}]{{{1}-{x}^{2}}}}\right)}{\left.{d}{x}\right.}$$ $$\left(d^{2}\frac{y}{dt^{2}}\right)\ +\ 7\left(\frac{dy}{dt}\right)\ +\ 10y=4te^{-3}t$$ with
$$y(0)=0,\ y'(0)=\ -1$$ The coefficient matrix for a system of linear differential equations of the form $$\displaystyle{y}^{{{1}}}={A}_{{{y}}}$$ has the given eigenvalues and eigenspace bases. Find the general solution for the system.
$$\displaystyle{\left[\lambda_{{{1}}}=-{1}\Rightarrow\le{f}{t}{\left\lbrace{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}{0}{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{r}{i}{g}{h}{t}\right\rbrace},\lambda_{{{2}}}={3}{i}\Rightarrow\le{f}{t}{\left\lbrace{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}-{i}{1}+{i}{7}{i}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{r}{i}{g}{h}{t}\right\rbrace},\lambda_{{3}}=-{3}{i}\Rightarrow\le{f}{t}{\left\lbrace{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}+{i}{1}-{i}-{7}{i}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{r}{i}{g}{h}{t}\right\rbrace}\right]}$$ Make and solve the given equation $$d^{3}\ \frac{y}{dx^{3}}\ -\ d^{2}\ \frac{y}{dx^{2}}=2x\ +\ 3$$