Let displaystyle{F}_{{i}} be in the displaystyle{i}^{{{t}{h}}} Fibonacc number, and let n be ary positive eteger displaystylege{3} Prove that displaystyle{F}_{{n}}=frac{1}{{4}}{left({F}_{{{n}-{2}}}+{F}_{{n}}+{F}_{{{n}+{2}}}right)}

Question
Discrete math
asked 2021-01-19
Let \(\displaystyle{F}_{{i}}\) be in the \(\displaystyle{i}^{{{t}{h}}}\) Fibonacc number, and let n be ary positive eteger \(\displaystyle\ge{3}\)
Prove that
\(\displaystyle{F}_{{n}}=\frac{1}{{4}}{\left({F}_{{{n}-{2}}}+{F}_{{n}}+{F}_{{{n}+{2}}}\right)}\)

Answers (1)

2021-01-20
Let us first recall a definition of nth Fibonacci number
\(\displaystyle{F}_{{n}}={F}_{{{n}-{1}}}+{F}_{{{n}-{2}}},\text{for}\ {n}\ge{2}\)
Now we have to show
\(\displaystyle{F}_{{n}}=\frac{1}{{4}}{\left({F}_{{{n}-{2}}}+{F}_{{n}}+{F}_{{{n}+{2}}}\right)},\text{for}\ {n}\ge{3}\)
Now starting from right hand side we get
\(\displaystyle\frac{1}{{4}}{\left({F}_{{{n}-{2}}}+{F}_{{n}}+{F}_{{{n}+{2}}}\right)}=\frac{1}{{4}}{\left({F}_{{{n}-{2}}}+{F}_{{n}}+{\left({F}_{{{n}+{1}}}{F}_{{n}}\right)}\right)}{\left[\therefore{F}_{{{n}+{2}}}={F}_{{{n}+{1}}}+{F}_{{n}}\right]}\)
\(\displaystyle=\frac{1}{{4}}{\left({F}_{{{n}-{2}}}+{2}{F}_{{n}}+{F}_{{{n}+{1}}}\right)}{\left[\therefore{F}_{{{n}+{2}}}={F}_{{{n}+{1}}}+{F}_{{n}}\right]}\)
\(\displaystyle=\frac{1}{{4}}{\left({F}_{{{n}-{2}}}+{2}{F}_{{n}}+{\left({F}_{{n}}{F}_{{{n}-{1}}}\right)}\right)}{\left[\therefore{F}_{{{n}+{1}}}={F}_{{n}}+{F}_{{{n}-{1}}}\right]}\)
\(\displaystyle=\frac{1}{{4}}{\left({\left({F}_{{{n}-{2}}}+{F}_{{{n}-{1}}}\right)}{3}{F}_{{n}}\right)}
\(\displaystyle=\frac{1}{{4}}{\left({4}{F}_{{n}}\right)}{\left[\therefore{F}_{{n}}={F}_{{{n}-{1}}}+{F}_{{{n}-{2}}}\right]}\)
\(\displaystyle={F}_{{n}}\)
Hence the proved
0

Relevant Questions

asked 2021-03-07
Let \(\displaystyle\le{f}{t}{\left\lbrace{v}_{{{1}}},\ {v}_{{{2}}},\dot{{s}},\ {v}_{{{n}}}{r}{i}{g}{h}{t}\right\rbrace}\) be a basis for a vector space V. Prove that if a linear transformation \(\displaystyle{T}\ :\ {V}\rightarrow\ {V}\) satisfies \(\displaystyle{T}{\left({v}_{{{1}}}\right)}={0}\ \text{for}\ {i}={1},\ {2},\dot{{s}},\ {n},\) then T is the zero transformation.
Getting Started: To prove that T is the zero transformation, you need to show that \(\displaystyle{T}{\left({v}\right)}={0}\) for every vector v in V.
(i) Let v be an arbitrary vector in V such that \(\displaystyle{v}={c}_{{{1}}}\ {v}_{{{1}}}\ +\ {c}_{{{2}}}\ {v}_{{{2}}}\ +\ \dot{{s}}\ +\ {c}_{{{n}}}\ {v}_{{{n}}}.\)
(ii) Use the definition and properties of linear transformations to rewrite \(\displaystyle{T}\ {\left({v}\right)}\) as a linear combination of \(\displaystyle{T}\ {\left({v}_{{{1}}}\right)}\).
(iii) Use the fact that \(\displaystyle{T}\ {\left({v}_{{i}}\right)}={0}\) to conclude that \(\displaystyle{T}\ {\left({v}\right)}={0}\), making T the zero tranformation.
asked 2021-01-19
For each positive integer n, find the number of positive integers that are less than 210n which are odd multiples of three that are not multiples of five and are not multiples of seven. Justify your answer, which should be in terms of n.
asked 2021-03-02
Using cardinatility of sets in discrete mathematics the value of N is real numbers Currently using elements of discrete mathematics by Richard Hammack chapter 18 Let A be a collection of sets such that X in A if and only if \(X \supset N\ \text{and} |X| = n\) for some n in N. Prove that \(|A| = |N|\).
asked 2020-10-23
A random sample of \(\displaystyle{n}_{{1}}={16}\) communities in western Kansas gave the following information for people under 25 years of age.
\(\displaystyle{X}_{{1}}:\) Rate of hay fever per 1000 population for people under 25
\(\begin{array}{|c|c|} \hline 97 & 91 & 121 & 129 & 94 & 123 & 112 &93\\ \hline 125 & 95 & 125 & 117 & 97 & 122 & 127 & 88 \\ \hline \end{array}\)
A random sample of \(\displaystyle{n}_{{2}}={14}\) regions in western Kansas gave the following information for people over 50 years old.
\(\displaystyle{X}_{{2}}:\) Rate of hay fever per 1000 population for people over 50
\(\begin{array}{|c|c|} \hline 94 & 109 & 99 & 95 & 113 & 88 & 110\\ \hline 79 & 115 & 100 & 89 & 114 & 85 & 96\\ \hline \end{array}\)
(i) Use a calculator to calculate \(\displaystyle\overline{{x}}_{{1}},{s}_{{1}},\overline{{x}}_{{2}},{\quad\text{and}\quad}{s}_{{2}}.\) (Round your answers to two decimal places.)
(ii) Assume that the hay fever rate in each age group has an approximately normal distribution. Do the data indicate that the age group over 50 has a lower rate of hay fever? Use \(\displaystyle\alpha={0.05}.\)
(a) What is the level of significance?
State the null and alternate hypotheses.
\(\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}<\mu_{{2}}\)
\(\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}>\mu_{{2}}\)
\(\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}\ne\mu_{{2}}\)
\(\displaystyle{H}_{{0}}:\mu_{{1}}>\mu_{{2}},{H}_{{1}}:\mu_{{1}}=\mu_{{12}}\)
(b) What sampling distribution will you use? What assumptions are you making?
The standard normal. We assume that both population distributions are approximately normal with known standard deviations.
The Student's t. We assume that both population distributions are approximately normal with unknown standard deviations,
The standard normal. We assume that both population distributions are approximately normal with unknown standard deviations,
The Student's t. We assume that both population distributions are approximately normal with known standard deviations,
What is the value of the sample test statistic? (Test the difference \(\displaystyle\mu_{{1}}-\mu_{{2}}\). Round your answer to three decimalplaces.)
What is the value of the sample test statistic? (Test the difference \(\displaystyle\mu_{{1}}-\mu_{{2}}\). Round your answer to three decimal places.)
(c) Find (or estimate) the P-value.
P-value \(\displaystyle>{0.250}\)
\(\displaystyle{0.125}<{P}-\text{value}<{0},{250}\)
\(\displaystyle{0},{050}<{P}-\text{value}<{0},{125}\)
\(\displaystyle{0},{025}<{P}-\text{value}<{0},{050}\)
\(\displaystyle{0},{005}<{P}-\text{value}<{0},{025}\)
P-value \(\displaystyle<{0.005}\)
Sketch the sampling distribution and show the area corresponding to the P-value.
P.vaiue Pevgiue
P-value f P-value
asked 2021-02-09
Consider the following recurrence relation:
\(\displaystyle{a}_{{n}}={2}\cdot{a}_{{{n}-{1}}}-{3}\ \text{with}\ {a}_{{1}}={5}\)
asked 2021-01-05
Let \(\displaystyle{A}_{{{2}}}{A}_{{{2}}}\) be the set of all multiples of 2 except for 2.2. Let \(\displaystyle{A}_{{{3}}}{A}_{{{3}}}\) be the set of all multiples of 3 except for 3. And so on, so that \(\displaystyle{A}_{{{n}}}{A}_{{{n}}}\) is the set of all multiples of nn except for n,n, for any \(\displaystyle{n}\geq{2}.{n}\geq{2}\). Describe (in words) the set \(\displaystyle{A}_{{{2}}}\cup{A}_{{{3}}}\cup{A}_{{{4}}}\cup\ldots\)
asked 2020-12-25
Im confused on this question for Discrete Mathematics.
Let \(\displaystyle{A}_{{{2}}}\) be the set of all multiples of 2 except for 2. Let \(\displaystyle{A}_{{{3}}}\) be the set of all multiples of 3 except for 3. And so on, so that \(\displaystyle{A}_{{{n}}}\) is the set of all multiples of n except for n, for any \(\displaystyle{n}\geq{2}\). Describe (in words) the set \(\displaystyle{A}_{{{2}}}\cup{A}_{{{3}}}\cup{A}_{{{4}}}\cup\ldots\).
asked 2021-01-30
a) If \(\displaystyle f{{\left({t}\right)}}={t}^{m}{\quad\text{and}\quad} g{{\left({t}\right)}}={t}^{n}\), where m and n are positive integers. show that \(\displaystyle{f}\ast{g}={t}^{{{m}+{n}+{1}}}{\int_{{0}}^{{1}}}{u}^{m}{\left({1}-{u}\right)}^{n}{d}{u}\)
b) Use the convolution theorem to show that
\(\displaystyle{\int_{{0}}^{{1}}}{u}^{m}{\left({1}-{u}\right)}^{n}{d}{u}=\frac{{{m}!{n}!}}{{{\left({m}+{n}+{1}\right)}!}}\)
c) Extend the result of part b to the case where m and n are positive numbers but not necessarily integers.
asked 2020-11-09
Prove that by setting these two expressions equal to another, the result is an identity:
\(\displaystyle{d}={{\cos}^{ -{{1}}}{\left( \sin{{\left({L}{T}_{{1}}\right)}} \sin{{\left({L}{T}_{{2}}\right)}}+ \cos{{\left({L}{T}_{{1}}\right)}} \cos{{\left({L}{T}_{{2}}\right)}} \cos{{\left({{\ln}_{{1}}-}{\ln}_{{2}}\right)}}\right)}}\)
\(\displaystyle{d}={2}{{\sin}^{ -{{1}}}{\left(\sqrt{{{{\sin}^{2}{\left(\frac{{{L}{T}_{{1}}-{L}{T}_{{2}}}}{{2}}\right)}}+ \cos{{\left({L}{T}_{{1}}\right)}} \cos{{\left({L}{T}_{{2}}\right)}}{{\sin}^{2}{\left(\frac{{{{\ln}_{{1}}-}{\ln}_{{2}}}}{{2}}\right)}}}}\right)}}\)
asked 2020-12-02
Gastroenterology
We present data relating protein concentration to pancreatic function as measured by trypsin secretion among patients with cystic fibrosis.
If we do not want to assume normality for these distributions, then what statistical procedure can be used to compare the three groups?
Perform the test mentioned in Problem 12.42 and report a p-value. How do your results compare with a parametric analysis of the data?
Relationship between protein concentration \((mg/mL)\) of duodenal secretions to pancreatic function as measured by trypsin secretion:
\(\left[U/\left(k\ \frac{g}{h}r\right)\right]\)
Tapsin secreton [UGA]
\(\leq\ 50\)
\(\begin{array}{|c|c|}\hline \text{Subject number} & \text{Protetion concentration} \\ \hline 1 & 1.7 \\ \hline 2 & 2.0 \\ \hline 3 & 2.0 \\ \hline 4 & 2.2 \\ \hline 5 & 4.0 \\ \hline 6 & 4.0 \\ \hline 7 & 5.0 \\ \hline 8 & 6.7 \\ \hline 9 & 7.8 \\ \hline \end{array}\)
\(51\ -\ 1000\)
\(\begin{array}{|c|c|}\hline \text{Subject number} & \text{Protetion concentration} \\ \hline 1 & 1.4 \\ \hline 2 & 2.4 \\ \hline 3 & 2.4 \\ \hline 4 & 3.3 \\ \hline 5 & 4.4 \\ \hline 6 & 4.7 \\ \hline 7 & 6.7 \\ \hline 8 & 7.9 \\ \hline 9 & 9.5 \\ \hline 10 & 11.7 \\ \hline \end{array}\)
\(>\ 1000\)
\(\begin{array}{|c|c|}\hline \text{Subject number} & \text{Protetion concentration} \\ \hline 1 & 2.9 \\ \hline 2 & 3.8 \\ \hline 3 & 4.4 \\ \hline 4 & 4.7 \\ \hline 5 & 5.5 \\ \hline 6 & 5.6 \\ \hline 7 & 7.4 \\ \hline 8 & 9.4 \\ \hline 9 & 10.3 \\ \hline \end{array}\)
...