Find laplace transform of each following a) displaystyle{t}^{n} b) displaystyle cos{omega}{t} c) displaystyle sin{{h}}{left({c}{t}right)} d) displaystyle cos{{h}}{left({c}{t}right)}

Question
Laplace transform
asked 2020-10-28
Find laplace transform of each following
a) \(\displaystyle{t}^{n}\)
b) \(\displaystyle \cos{\omega}{t}\)
c) \(\displaystyle \sin{{h}}{\left({c}{t}\right)}\)
d) \(\displaystyle \cos{{h}}{\left({c}{t}\right)}\)

Answers (1)

2020-10-29
ANSWER FOR (A)We have to find Laplace transform of \(\displaystyle{t}^{n}\), that is, \(\displaystyle{L}{\left\lbrace{t}^{n}\right\rbrace}\).
Now from the Laplace Transform table we know that
\(\displaystyle{L}{\left\lbrace{t}^{n}\right\rbrace}=\frac{{{n}!}}{{{s}^{{{n}+{1}}}}}\)
This shows that
\(\displaystyle{L}{\left\lbrace{t}^{n}\right\rbrace}=\frac{{{n}!}}{{{s}^{{{n}+{1}}}}}\)
ANSWER FOR (B) We have to find Laplace transform of \(\displaystyle \cos{{\left(\omega{t}\right)}}\), that is, L \(\displaystyle{\left\lbrace \cos{{\left(\omega{t}\right)}}\right\rbrace}\)
Now from the Laplace Transform table we know that
\(\displaystyle{L}{\left\lbrace \cos{{\left({a}{t}\right)}}\right\rbrace}=\frac{s}{{{s}^{2}+{a}^{2}}}\)
Whis shows that
\(\displaystyle{L}{\left\lbrace \cos{{\left(\omega{t}\right)}}\right\rbrace}=\frac{s}{{{s}^{2}+\omega^{2}}}\)
ANSWER FOR (C) We have to find Laplace transform of \(\displaystyle \sin{{h}}{\left({c}{t}\right)}\), that is, L \(\displaystyle{\left\lbrace \sin{{h}}{\left({c}{t}\right)}\right\rbrace}\)
Now from the Laplace Transform table we know that
\(\displaystyle{L}{\left\lbrace \sin{{h}}{\left({a}{t}\right)}\right\rbrace}=\frac{a}{{{s}^{2}-{a}^{2}}}\)
Whis shows that
\(\displaystyle{L}{\left\lbrace \sinh{{\left({c}{t}\right)}}\right\rbrace}=\frac{c}{{{s}^{2}-{c}^{2}}}\)
ANSWER FOR (D) We have to find Laplace transform of \(\displaystyle \cos{{h}}{\left({c}{t}\right)}\), that is, L \(\displaystyle{\left\lbrace \cos{{h}}{\left({c}{t}\right)}\right\rbrace}\)
Now from the Laplace Transform table we know that \(\displaystyle{L}{\left\lbrace \cos{{h}}{\left({a}{t}\right)}\right\rbrace}=\frac{s}{{{s}^{2}-{a}^{2}}}\)
Whis shows that
\(\displaystyle{L}{\left\lbrace \cos{{h}}{\left({c}{t}\right)}\right\rbrace}=\frac{s}{{{s}^{2}-{c}^{2}}}\)
0

Relevant Questions

asked 2020-10-25
Please provide steps
The inverse Laplace transform for
\(\displaystyle{F}{\left({s}\right)}=\frac{8}{{{s}+{9}}}-\frac{6}{{{s}^{2}-\sqrt{{3}}}}\) is
a) \(\displaystyle{8}{e}^{{-{9}{t}}}-{6} \sin{{h}}{{\left({3}{t}\right)}}\)
b) \(\displaystyle{8}{e}^{{-{9}{t}}}-{6} \cos{{h}}{\left({3}{t}\right)}\)
c) \(\displaystyle{8}{e}^{{{9}{t}}}-{6} \sin{{h}}{\left({3}{t}\right)}\)
d) \(\displaystyle{8}{e}^{{{9}{t}}}-{6} \cos{{h}}{\left({3}{t}\right)}\)
asked 2021-02-21
Find the Laplace transforms of the following time functions.
Solve problem 1(a) and 1 (b) using the Laplace transform definition i.e. integration. For problem 1(c) and 1(d) you can use the Laplace Transform Tables.
a)\(f(t)=1+2t\) b)\(f(t) =\sin \omega t \text{Hint: Use Euler’s relationship, } \sin\omega t = \frac{e^(j\omega t)-e^(-j\omega t)}{2j}\)
c)\(f(t)=\sin(2t)+2\cos(2t)+e^{-t}\sin(2t)\)
asked 2021-02-25
Use properties of the Laplace transform to answer the following
(a) If \(f(t)=(t+5)^2+t^2e^{5t}\), find the Laplace transform,\(L[f(t)] = F(s)\).
(b) If \(f(t) = 2e^{-t}\cos(3t+\frac{\pi}{4})\), find the Laplace transform, \(L[f(t)] = F(s)\). HINT:
\(\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha) \sin(\beta)\)
(c) If \(F(s) = \frac{7s^2-37s+64}{s(s^2-8s+16)}\) find the inverse Laplace transform, \(L^{-1}|F(s)| = f(t)\)
(d) If \(F(s) = e^{-7s}(\frac{1}{s}+\frac{s}{s^2+1})\) , find the inverse Laplace transform, \(L^{-1}[F(s)] = f(t)\)
asked 2020-12-30
The Laplace inverse of \(L^{-1}\left[\frac{s}{s^2+5^2}\right]\) is
\(a) \cos(5t)\)
\(b) \sin h(5t)\)
\(c) \sin(5t)\)
\(d) \cos h(5t)\)
asked 2021-02-10
Find the equation by applying the Laplace transform.
\(\displaystyle{y}^{{{\left({4}\right)}}}-{y}= \sin{{h}}{t}\)
\(y(0)=y'(0)=y"(0)=0\)
\(y'''(0)=1\)
asked 2021-01-27
Please solve the 2nd order differential equation by (PLEASE FOLLOW GIVEN METHOD) LAPLACE TRANSFORMATION
ALSO, USE PARTIAL FRACTION WHEN YOU ARRIVE
\(L(y) = \left[\frac{w}{(s^2 + a^2)(s^2+w^2)}\right]*b\)
Problem 2 Solve the differential equation
\(\frac{d^2y}{dt^2}+a^2y=b \sin(\omega t)\) where \(y(0)=0\)
and \(y'(0)=0\)
asked 2020-12-16
Existence of Laplace Transform
Do the Laplace transforms for the following functions exist? Explain your answers. (You do not need to find the transforms , just show if they exist or not)
a) \(f(t)=t^2\sin(\omega t)\)
b) \(f(t)=e^{t^2}\sin(\omega t)\)
asked 2021-02-08
Find the inverse Laplace transform of \(F(s)=\frac{(s+4)}{(s^2+9)}\)
a)\(\cos(t)+\frac{4}{3}\sin(t)\)
b)non of the above
c) \(\cos(3t)+\sin(3t)\)
d) \(\cos(3t)+\frac{4}{3} \sin(3t)\)
e)\(\cos(3t)+\frac{2}{3} \sin(3t)\)
f) \(\cos(t)+4\sin(t)\)
asked 2021-01-15
Let \(y(t)=\int_0^tf(t)dt\) If the Laplace transform of y(t) is given \(Y(s)=\frac{19}{(s^2+25)}\) , find f(t)
a) \(f(t)=19 \sin(5t)\)
b) none
c) \(f(t)=6 \sin(2t)\)
d) \(f(t)=20 \cos(6t)\)
e) \(f(t)=19 \cos(5t)\)
asked 2020-11-29
Find the Laplace transform of \(\displaystyle f{{\left({t}\right)}}={t}{e}^{{-{t}}} \sin{{\left({2}{t}\right)}}\)
Then you obtain \(\displaystyle{F}{\left({s}\right)}=\frac{{{4}{s}+{a}}}{{\left({\left({s}+{1}\right)}^{2}+{4}\right)}^{2}}\)
Please type in a = ?
...