# For the exponential fuction f(x)=10^x, find f(3/2)f(3/2)=?

For the exponential fuction $$\displaystyle{f{{\left({x}\right)}}}={10}^{{x}}$$, find $$\displaystyle f{{\left(\frac{3}{{2}}\right)}}$$
$$\displaystyle f{{\left(\frac{3}{{2}}\right)}}=?$$

• Questions are typically answered in as fast as 30 minutes

### Plainmath recommends

• Get a detailed answer even on the hardest topics.
• Ask an expert for a step-by-step guidance to learn to do it yourself.

Ayesha Gomez

First of all, put the value of $$\displaystyle{x}=\frac{3}{{2}}$$ in $$f(x)$$.
$$\displaystyle{f{{\left({x}\right)}}}={10}^{{x}}$$
$$\displaystyle{f{{\left({\frac{{{3}}}{{{2}}}}\right)}}}={10}^{{{\frac{{{3}}}{{{2}}}}}}$$
Now, use the radicals and simplify to find $$\displaystyle f{{\left(\frac{3}{{2}}\right)}}$$.
$$\displaystyle{f{{\left({\frac{{{3}}}{{{2}}}}\right)}}}={10}^{{{\frac{{{3}}}{{{2}}}}}}$$
$$\sqrt[2]{10^3}$$
$$\displaystyle=\sqrt[2]{{10}\times{10}\times{10}}$$
$$\displaystyle{10}\times\sqrt[2]{10}$$
$$\displaystyle={10}\times{3.162}$$
$$\displaystyle{f{{\left({\frac{{{3}}}{{{2}}}}\right)}}}={31.62}$$