Question

Solve the following initial value problem by using Laplace transform. y"+4y=4t+12 , y(0)=4 , y'(0)=0

Laplace transform
ANSWERED
asked 2021-09-03

Solve the following initial value problem by using Laplace transform
\(y''+4y=4t+12 , y(0)=4 , y'(0)=0\)

Expert Answers (1)

2021-09-04

\(y''+4y=4t+12 , y(0)=4 , y'(0)=0\)
Taking the Laplace transform on both side
\(L\left\{y"\right\}+4L\left\{y\right\}=4L\left\{t\right\}+12L\left\{1\right\}\)
\(s^2L\left\{y\right\}-sy(0)-y'(0)+4L\left\{y\right\}=4\frac{1}{s^2}+12\frac{1}{s}\)
\((s^2+4)L\left\{y\right\}-4s-0=4\left(\frac{3s+1}{s}\right)\)
\((s^2+4)L\left\{y\right\}=4\left(\frac{3s+1}{s}+s\right) \)
\((s^2+4)L\left\{y\right\}=4\left(\frac{3s+1+s^2}{s}\right)\)
\(L\left\{y\right\}=4\left(\frac{s^2+3s+1}{s(s^2+4)}\right)\)
\(\displaystyle={4}{\left({\frac{{{s}^{{2}}+{4}+{3}{s}-{3}}}{{{s}{\left({s}^{{2}}+{4}\right)}}}}\right)}\)
\(\displaystyle={4}{\left[{\frac{{{1}}}{{{s}}}}+{\frac{{{3}{s}-{3}}}{{{s}{\left({s}^{{2}}+{4}\right)}}}}\right]}\)
\(\displaystyle={4}{\left[{\frac{{{1}}}{{{s}}}}+{\frac{{{1}}}{{{4}}}}{\left({\frac{{{12}{s}-{12}}}{{{s}{\left({s}^{{2}}+{4}\right)}}}}\right)}\right]}\)
\(\displaystyle={4}{\left[{\frac{{{1}}}{{{s}}}}+{\frac{{{1}}}{{{4}}}}{\left({\frac{{{3}{s}^{{2}}-{3}{s}^{{2}}+{12}{s}-{12}}}{{{s}{\left({s}^{{2}}+{4}\right)}}}}\right)}\right]}\)
\(\displaystyle={4}{\frac{{{1}}}{{{s}}}}+{\frac{{{s}{\left({3}{s}+{12}\right)}-{3}{\left({s}^{{2}}+{4}\right)}}}{{{s}{\left({s}^{{2}}+{4}\right)}}}}\)
\(L\left\{y\right\}=\frac{4}{s}+\frac{3s+12}{s^2+4}-\frac{3}{s}\)
\(L\left\{y\right\}=\frac{1}{s}+3\frac{s}{s^2+4}+\frac{12}{s^2+4}\)
\(y(t)=L^{-1}\left\{\frac{1}{s}\right\}+3L^{-1}\left\{\frac{s}{s^2+4}\right\}+6L^{-1}\left\{\frac{2}{s^2+4}\right\}\)
\(\displaystyle{y}{\left({t}\right)}={1}+{3}{\cos{{\left({2}{t}\right)}}}+{6}{\sin{{\left({2}{t}\right)}}}\)

19
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2020-10-23

Solve the initial value problem \(\displaystyle{\left\lbrace\begin{matrix}{y}\text{}+{16}{y}= \cos{{\left({4}{t}\right)}}\\{y}{\left({0}\right)}={1}\\{y}'{\left({0}\right)}={1}\end{matrix}\right.}\) using the Laplace transform.

asked 2021-09-24

Use Laplace transform to solve the following initial value problem:
\(\displaystyle y''+{5}{y}={1}+{t},{y}{\left({0}\right)}={0},{y}'{\left({0}\right)}={4}\)
A)\(\displaystyle{\frac{{{7}}}{{{25}}}}{e}^{{t}}{\cos{{\left({2}{t}\right)}}}+{\frac{{{21}}}{{{10}}}}{e}^{{t}}{\sin{{\left({2}{t}\right)}}}\)
B) \(\displaystyle{\frac{{{7}}}{{{2}}}}+{\frac{{{t}}}{{{5}}}}-{\frac{{{t}}}{{{25}}}}{e}^{{t}}{\cos{{\left({2}{t}\right)}}}+{\frac{{{21}}}{{{10}}}}{e}^{{t}}{\sin{{\left({2}{t}\right)}}}\)
C) \(\displaystyle{\frac{{{7}}}{{{25}}}}+{\frac{{{t}}}{{{5}}}}\)
D) \(\displaystyle{\frac{{{7}}}{{{25}}}}+{\frac{{{t}}}{{{5}}}}-{\frac{{{7}}}{{{25}}}}{e}^{{t}}{\cos{{\left({2}{t}\right)}}}+{\frac{{{21}}}{{{10}}}}{e}^{{t}}{\sin{{\left({2}{t}\right)}}}\)
E) non of the above
F) \(\displaystyle{\frac{{{7}}}{{{25}}}}+{\frac{{{t}}}{{{5}}}}-{\frac{{{7}}}{{{5}}}}{e}^{{t}}{\cos{{\left({2}{t}\right)}}}+{\frac{{{21}}}{{{10}}}}{e}^{{t}}{\sin{{\left({2}{t}\right)}}}\)

asked 2021-09-12
Find the solution of the given Initial Value Problem by using the Laplace Transform Method.
\(\displaystyle{y}{'''}-{2}{y}\text{+5y'=t , y(0)=0 , y'(0)=1 , y}{\left({0}\right)}={2}\)
asked 2021-09-08

Solve initial value problem using laplace transform tables
\(y'=t+3 , y(0)=2\)

...