FOIL method is first, outer, inner, last.

The given polynomial is,

\(\displaystyle{\left(-{2}{x}-{3}{y}\right)}{\left({3}{x}+{2}{y}\right)}\)

Opening the bracket to solve the equation as,

\(\displaystyle{\left(-{2}{x}-{3}{y}\right)}{\left({3}{x}+{2}{y}\right)}=-{2}{x}\times{3}{x}-{2}{x}\times{2}{y}-{3}{y}\times{3}{x}-{3}{y}\times{2}{y}\)

\(\displaystyle=-{6}{x}^{{2}}-{4}{x}{y}-{9}{x}{y}-{6}{y}^{{2}}\)

After separating the terms, the final product of the polynomials will be,

\(\displaystyle{\left(-{2}{x}-{3}{y}\right)}{\left({3}{x}+{2}{y}\right)}=-{6}{x}^{{2}}-{12}{x}{y}-{6}{y}^{{2}}\)

The given polynomial is,

\(\displaystyle{\left(-{2}{x}-{3}{y}\right)}{\left({3}{x}+{2}{y}\right)}\)

Opening the bracket to solve the equation as,

\(\displaystyle{\left(-{2}{x}-{3}{y}\right)}{\left({3}{x}+{2}{y}\right)}=-{2}{x}\times{3}{x}-{2}{x}\times{2}{y}-{3}{y}\times{3}{x}-{3}{y}\times{2}{y}\)

\(\displaystyle=-{6}{x}^{{2}}-{4}{x}{y}-{9}{x}{y}-{6}{y}^{{2}}\)

After separating the terms, the final product of the polynomials will be,

\(\displaystyle{\left(-{2}{x}-{3}{y}\right)}{\left({3}{x}+{2}{y}\right)}=-{6}{x}^{{2}}-{12}{x}{y}-{6}{y}^{{2}}\)