We have to subtract: \(\displaystyle{\left(-{4}{a}^{{2}}+{6}{a}+{10}\right)}-{\left({2}{a}^{{2}}-{6}{a}-{4}\right)}\)

The subtraction for the polynomials can be given as:

\(\displaystyle{\left(-{4}{a}^{{2}}+{6}{a}+{10}\right)}-{\left({2}{a}^{{2}}-{6}{a}-{4}\right)}\)

\(\displaystyle={\left(-{4}{a}^{{2}}-{2}{a}^{{2}}\right)}+{\left({6}{a}+{6}{a}\right)}+{\left({10}+{4}\right)}\)

\(\displaystyle=-{6}{a}^{{2}}+{12}{a}+{14}\)

which is the required solution

The subtraction for the polynomials can be given as:

\(\displaystyle{\left(-{4}{a}^{{2}}+{6}{a}+{10}\right)}-{\left({2}{a}^{{2}}-{6}{a}-{4}\right)}\)

\(\displaystyle={\left(-{4}{a}^{{2}}-{2}{a}^{{2}}\right)}+{\left({6}{a}+{6}{a}\right)}+{\left({10}+{4}\right)}\)

\(\displaystyle=-{6}{a}^{{2}}+{12}{a}+{14}\)

which is the required solution