When the chi squared statistic is used in testing hypothesis? Include underlying assumptions and the test statistic for testing hypothesis on a single

Alyce Wilkinson 2021-02-06 Answered
When the chi squared statistic is used in testing hypothesis? Include underlying assumptions and the test statistic for testing hypothesis on a single population. What is the criterion for rejecting the null hypothesis for both non-directional and directional tests? How do you find the p value in each case?

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question

Expert Answer

FieniChoonin
Answered 2021-02-07 Author has 14851 answers

Chi-square statistic for testing single variance:
The Chi-square statistic is used to test the population variance of a single sample.
The necessary assumptions for Chi-square test:
The sample should be collected using simple random sampling.
The population from which the sample is drawn should follow normal distribution.
The data should be continuous.
The chi-square test statistic is obtained as given below:
\(\displaystyle{x}^{2}=\frac{{{\left({n}-{1}\right)}{s}^{2}}}{{\sigma^{2}}}\)
\(\displaystyle{n}=\) Sample size
\(\displaystyle{s}^{2}=\) Sample variance
\(\displaystyle\sigma^{2}=\) Population variance
Decision rule based on P-value approach for both directional and non-directional tests:
The level of significance is \(\alpha.\)
If P-value \(\displaystyle\le\alpha\), then reject the null hypothesis \(\displaystyle{H}_{{0}}\).
If P-value \(\displaystyle>\alpha\), then fail to reject the null hypothesis \(\displaystyle{H}_{{0}}\).
P-value:
The P­-value will be obtained from the chi-square distribution table based on the value of test statistic and the degrees of freedom \(\displaystyle{\left({n}–{1}\right)}\) and the type of hypothesis test (Two tailed, right tailed or left tailed).
Chi-square statistic for testing distribution:
The Chi-square goodness of fit test is used to test whether the sample data are consistent with a hypothesized distribution or not.
The chi-square goodness-of-fit test is used to test whether a sample of data comes from a population with a specific distribution. The chi-square goodness-of-fit can also be applied to discrete distributions
The necessary assumptions for Chi-square test for goodness of fit are given below:
The sample should be collected using simple random sampling.
The variable of interest must be categorical.
The expected value of each cell should not be less than 5.
Evidently, the test is to determine whether a sample of data comes from a population with a specific distribution.
Chi-square goodness of fit is a right tailed test. Therefore, it is a directional test.
The chi-square test statistic is obtained as given below:
\(\displaystyle{x}^{2}=\frac{{{\sum_{{{i}={1}}}^{{n}}}{\left({O}_{{i}}-{E}_{{i}}\right)}^{2}}}{{{E}_{{i}}}}\)
\(\displaystyle{O}_{{i}}=\) Observed frenquency
\(\displaystyle{E}_{{i}}=\) Expected frequency
Decision rule based on P-value approach:
The level of significance is \(\alpha.\)
If P-value \(\displaystyle\le\alpha\), then reject the null hypothesis \(\displaystyle{H}_{{0}}\).
If P-value \(\displaystyle>\alpha\), then fail to reject the null hypothesis \({H}_{{0}}\).
The P­-value will be obtained from the chi-square distribution table based on the value of test statistic and the degrees of freedom \(\displaystyle{\left({n}–{1}\right)}\) for the right tailed test.

Have a similar question?
Ask An Expert
44
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-01-17
A new thermostat has been engineered for the frozen food cases in large supermarkets. Both the old and new thermostats hold temperatures at an average of \(25^{\circ}F\). However, it is hoped that the new thermostat might be more dependable in the sense that it will hold temperatures closer to \(25^{\circ}F\). One frozen food case was equipped with the new thermostat, and a random sample of 21 temperature readings gave a sample variance of 5.1. Another similar frozen food case was equipped with the old thermostat, and a random sample of 19 temperature readings gave a sample variance of 12.8. Test the claim that the population variance of the old thermostat temperature readings is larger than that for the new thermostat. Use a \(5\%\) level of significance. How could your test conclusion relate to the question regarding the dependability of the temperature readings? (Let population 1 refer to data from the old thermostat.)
(a) What is the level of significance?
State the null and alternate hypotheses.
\(H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}>?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}\neq?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}?_{2}^{2},H1:?_{1}^{2}=?_{2}^{2}\)
(b) Find the value of the sample F statistic. (Round your answer to two decimal places.)
What are the degrees of freedom?
\(df_{N} = ?\)
\(df_{D} = ?\)
What assumptions are you making about the original distribution?
The populations follow independent normal distributions. We have random samples from each population.The populations follow dependent normal distributions. We have random samples from each population.The populations follow independent normal distributions.The populations follow independent chi-square distributions. We have random samples from each population.
(c) Find or estimate the P-value of the sample test statistic. (Round your answer to four decimal places.)
(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis?
At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the ? = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.
(e) Interpret your conclusion in the context of the application.
Reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings.Fail to reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings. Fail to reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.Reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.
asked 2021-06-13
1. The standard error of the estimate is the same at all points along the regression line because we assumed that A. The observed values of y are normally distributed around each estimated value of y-hat. B. The variance of the distributions around each possible value of y-hat is the same. C. All available data were taken into account when the regression line was calculated. D. The regression line minimized the sum of the squared errors. E. None of the above.
asked 2021-06-11

\(\begin{array}{cc}\hline & \text{Afraid to walk at night?} \\ \hline & \text{Yes} & \text{No} & \text{Total} \\ \hline \text{Male} & 173 & 598 & 771 \\ \hline \text{Female} & 393 & 540 & 933 \\ \hline \text{Total} & 566 & 1138 & 1704 \\ \hline \text{Source:}2014\ GSS \end{array}\)
If the chi-square \((\chi 2)\) test statistic \(=73.7\) what is the p-value you would report? Use Table C.Remember to calculate the df first.
Group of answer choices
\(P>0.250\)
\(P=0.01\)
\(P<0.001\)
\(P<0.002\)
image
\(\begin{array}{|c|cc|}\hline & \text{Right-Tail Probability} \\ \hline df & 0.250 & 0.100 & 0.050 & 0.025 & 0.010 & 0.005 & 0.001 \\ \hline 1 & 1.32 & 2.71 & 3.84 & 5.02 & 6.63 & 7.88 & 10.83 \\ 2 & 2.77 & 4.61 & 5.99 & 7.38 & 9.21 & 10.60 & 13.82 \\ 3 & 4.11 & 6.25 & 7.81 & 9.35 & 11.34 & 12.84 & 16.27 \\ 4 & 5.39 & 7.78 & 9.49 & 11.14 & 13.28 & 14.86 & 18.47 \\ 5 & 6.63 & 9.24 & 11.07 & 12.83 & 15.09 & 16.75 & 20.52 \\ 6&7.84&10.64&12.59&14.45&16.81&18.55&22.46 \\ 7&9.04&12.02&14.07&16.01&18.48&20.28&24.32\\ 8&10.22&13.36&15.51&17.53&20.09&21.96&26.12 \\ 9&11.39&14.68&16.92&19.02&21.67&23.59&27.88 \\ 10&12.55&15.99&18.31&20.48&23.21&25.19&29.59 \\ 11&13.70&17.28&19.68&21.92&24.72&26.76&31.26 \\ 12&14.85&18.55&21.03&23.34&26.22&28.30&32.91 \\ 13&15.98&19.81&22.36 & 24.74 & 27.69 & 29.82 & 34.53 \\ 14 & 17.12 & 21.06 & 23.68 & 26.12 & 29.14 & 31.32 & 36.12 \\15 & 18.25 & 22.31 & 25.00 & 27.49 & 30.58 & 32.80 & 37.70 \\ 16 & 19.37 & 32.54 & 26.30 & 28.85 & 32.00 & 34.27 & 39.25 \\ 17 & 20.49 & 24.77 & 27.59 & 30.19 & 33.41 & 35.72 & 40.79 \\ 18 & 21.60 & 25.99 & 28.87 & 31.53 & 34.81 & 37.16 & 42.31 \\ 19 & 22.72 & 27.20 & 30.14 & 32.85 & 36.19 & 38.58 & 43.82 \\ 20 & 23.83 & 28.41 & 31.41 & 34.17 & 37.57 & 40.00 & 45.32 \\ \hline \end{array}\)

asked 2021-10-11

Suppose that you want to perform a hypothesis test based on independent random samples to compare the means of two populations. For each part, decide whether you would use the pooled t-test, the nonpooled t-test, the Mann– Whitney test, or none of these tests if preliminary data analyses of the samples suggest that the two distributions of the variable under consideration are
a. normal but do not have the same shape.
b. not normal but have the same shape.
c. not normal and do not have the same shape; both sample sizes are large.
asked 2021-08-10
Suppose that you want to perform a hypothesis test based on independent random samples to compare the means of two populations. For each part, decide whether you would use the pooled t-test, the nonpooled t-test, the Mann– Whitney test, or none of these tests if preliminary data analyses of the samples suggest that the two distributions of the variable under consideration are a. normal but do not have the same shape. b. not normal but have the same shape. c. not normal and do not have the same shape. both sample sizes are large.
asked 2021-05-01

Assuming the null hypothesis is true, what is the probability that our z-test statistic would fall outside the z-critical boundaries (in the tails of the distribution the region of rejection) for anв \(\alpha=0.05?\)

...