Question

Use the change-of-base theorem to find an approximation to four decimal places for each logarithm displaystyle{{log}_{{2}}{5}}

Modeling data distributions
ANSWERED
asked 2021-02-09
Use the change-of-base theorem to find an approximation to four decimal places for each logarithm \(\displaystyle{{\log}_{{2}}{5}}\)

Answers (1)

2021-02-10
Given, \(\displaystyle{{\log}_{{2}}{5}}\)
Change to base 10, we get
\(\displaystyle{{\log}_{{2}}{5}}=\frac{{ \log{{5}}}}{{ \log{{2}}}}:'{{\log}_{{b}}{x}}=\frac{{{{\log}_{{a}}{x}}}}{{{{\log}_{{a}}{b}}}}\)
\(\displaystyle=\frac{0.69897}{{0.0301029}}\)
\(\displaystyle={2.3219}\)
Therefore,
\(\displaystyle{{\log}_{{2}}{5}}={2.3219}\)
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-05-03
Find the linear approximation of the function \(f(x) = \sqrt{1-x}\) at a = 0 and use it to approximate the numbers \(\sqrt{0.9}\) and \(\sqrt{0.99}\). (Round your answers to four decimal places.)
L(x) =
\(\sqrt{0.9} \approx\)
\(\sqrt{0.99} \approx\)
asked 2021-06-01

Find the linear approximation of the function \(f(x)=\sqrt{4-x}\) at \(a=0\)
Use L(x) to approximate the numbers \(\sqrt{3.9}\) and \(\sqrt{3.99}\) Round to four decimal places

asked 2021-05-01
Find all zeros of p(x), real or imaginary. \(p(x) = x^{4} + 6x^{3} + 6x^{2} -18x -27\) List all of the possible rational zeros according to the rational zero theorem and state the values for C, A, B and D in the following partial factorization of \(p(x) = (x-c)(x^{3}+Ax^{2}+Bx+D)\) State the exact answer and a decimal approximation of each zero to the tenths place
asked 2021-05-14
Consider the accompanying data on flexural strength (MPa) for concrete beams of a certain type.
\(\begin{array}{|c|c|}\hline 11.8 & 7.7 & 6.5 & 6 .8& 9.7 & 6.8 & 7.3 \\ \hline 7.9 & 9.7 & 8.7 & 8.1 & 8.5 & 6.3 & 7.0 \\ \hline 7.3 & 7.4 & 5.3 & 9.0 & 8.1 & 11.3 & 6.3 \\ \hline 7.2 & 7.7 & 7.8 & 11.6 & 10.7 & 7.0 \\ \hline \end{array}\)
a) Calculate a point estimate of the mean value of strength for the conceptual population of all beams manufactured in this fashion. \([Hint.\ ?x_{j}=219.5.]\) (Round your answer to three decimal places.)
MPa
State which estimator you used.
\(x\)
\(p?\)
\(\frac{s}{x}\)
\(s\)
\(\tilde{\chi}\)
b) Calculate a point estimate of the strength value that separates the weakest \(50\%\) of all such beams from the strongest \(50\%\).
MPa
State which estimator you used.
\(s\)
\(x\)
\(p?\)
\(\tilde{\chi}\)
\(\frac{s}{x}\)
c) Calculate a point estimate of the population standard deviation ?. \([Hint:\ ?x_{i}2 = 1859.53.]\) (Round your answer to three decimal places.)
MPa
Interpret this point estimate.
This estimate describes the linearity of the data.
This estimate describes the bias of the data.
This estimate describes the spread of the data.
This estimate describes the center of the data.
Which estimator did you use?
\(\tilde{\chi}\)
\(x\)
\(s\)
\(\frac{s}{x}\)
\(p?\)
d) Calculate a point estimate of the proportion of all such beams whose flexural strength exceeds 10 MPa. [Hint: Think of an observation as a "success" if it exceeds 10.] (Round your answer to three decimal places.)
e) Calculate a point estimate of the population coefficient of variation \(\frac{?}{?}\). (Round your answer to four decimal places.)
State which estimator you used.
\(p?\)
\(\tilde{\chi}\)
\(s\)
\(\frac{s}{x}\)
\(x\)
asked 2021-03-11
An automobile tire manufacturer collected the data in the table relating tire pressure x​ (in pounds per square​ inch) and mileage​ (in thousands of​ miles). A mathematical model for the data is given by
\(\displaystyle​ f{{\left({x}\right)}}=-{0.554}{x}^{2}+{35.5}{x}-{514}.\)
\(\begin{array}{|c|c|} \hline x & Mileage \\ \hline 28 & 45 \\ \hline 30 & 51\\ \hline 32 & 56\\ \hline 34 & 50\\ \hline 36 & 46\\ \hline \end{array}\)
​(A) Complete the table below.
\(\begin{array}{|c|c|} \hline x & Mileage & f(x) \\ \hline 28 & 45 \\ \hline 30 & 51\\ \hline 32 & 56\\ \hline 34 & 50\\ \hline 36 & 46\\ \hline \end{array}\)
​(Round to one decimal place as​ needed.)
\(A. 20602060xf(x)\)
A coordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2. Data points are plotted at (28,45), (30,51), (32,56), (34,50), and (36,46). A parabola opens downward and passes through the points (28,45.7), (30,52.4), (32,54.7), (34,52.6), and (36,46.0). All points are approximate.
\(B. 20602060xf(x)\)
Acoordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2.
Data points are plotted at (43,30), (45,36), (47,41), (49,35), and (51,31). A parabola opens downward and passes through the points (43,30.7), (45,37.4), (47,39.7), (49,37.6), and (51,31). All points are approximate.
\(C. 20602060xf(x)\)
A coordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2. Data points are plotted at (43,45), (45,51), (47,56), (49,50), and (51,46). A parabola opens downward and passes through the points (43,45.7), (45,52.4), (47,54.7), (49,52.6), and (51,46.0). All points are approximate.
\(D.20602060xf(x)\)
A coordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2. Data points are plotted at (28,30), (30,36), (32,41), (34,35), and (36,31). A parabola opens downward and passes through the points (28,30.7), (30,37.4), (32,39.7), (34,37.6), and (36,31). All points are approximate.
​(C) Use the modeling function​ f(x) to estimate the mileage for a tire pressure of 29
\(\displaystyle​\frac{{{l}{b}{s}}}{{{s}{q}}}\in.\) and for 35
\(\displaystyle​\frac{{{l}{b}{s}}}{{{s}{q}}}\in.\)
The mileage for the tire pressure \(\displaystyle{29}\frac{{{l}{b}{s}}}{{{s}{q}}}\in.\) is
The mileage for the tire pressure \(\displaystyle{35}\frac{{{l}{b}{s}}}{{{s}{q}}}\) in. is
(Round to two decimal places as​ needed.)
(D) Write a brief description of the relationship between tire pressure and mileage.
A. As tire pressure​ increases, mileage decreases to a minimum at a certain tire​ pressure, then begins to increase.
B. As tire pressure​ increases, mileage decreases.
C. As tire pressure​ increases, mileage increases to a maximum at a certain tire​ pressure, then begins to decrease.
D. As tire pressure​ increases, mileage increases.
asked 2021-01-17

Use the table from the Theoretical Distribution section to calculate the following answers. Round your answers to four decimal places. \(P(x = 3)=?\)
\(P(1 < x < 4) = ?\)
\(P(x \geq 8) = ?\) Use the data from the Organize the Data section to calculate the following answers. Round your answers to four decimal places. \(RF(x = 3) = ?\)
\(RF(1 < x < 4) =?\)
\(RF(x \geq 8) = ?\) Discussion Questions 1. Knowing that data vary, describe three similarities between the graphs and distributions of the theoretical, empirical, and simulation distributions. Use complete sentences.

asked 2020-11-08
Are yields for organic farming different from conventional farming yields? Independent random samples from method A (organic farming) and method B (conventional farming) gave the following information about yield of sweet corn (in tons/acre). \(\text{Method} A: 6.51, 7.02, 6.81, 7.27, 6.73, 6.11, 6.17, 5.88, 6.69, 7.12, 5.74, 6.90.\)
\(\text{Method} B: 7.32, 7.01, 6.66, 6.85, 5.78, 6.48, 5.95, 6.31, 6.50, 5.93, 6.68.\) Use a 5% level of significance to test the claim that there is no difference between the yield distributions. (a) What is the level of significance? (b) Compute the sample test statistic. (Round your answer to two decimal places.) (c) Find the P-value of the sample test statistic. (Round your answer to four decimal places.)
asked 2021-06-09
The following table represents the Frequency Distribution and Cumulative Distributions for this data set: 12, 13, 17, 18, 18, 24, 26, 27, 27, 30, 30, 35, 37, 41, 42, 43, 44, 46, 53, 58 Class Frequency Relative Cumulative Frequency Frequency 10 but less than 20 5 20 but less than 30 4 30 but less than 4 4 40 but less than 50 5 50 but less than 60 2 TOTAL What is the Relative Frequency for the class: 20 but less than 30? State you answer as a value with exactly two digits after the decimal. for example 0.30 or 0.35
asked 2021-06-10
Here’s an interesting challenge you can give to a friend. Hold a $1 (or larger!) bill by an upper corner. Have a friend prepare to pinch a lower corner, putting her fingers near but not touching the bill. Tell her to try to catch the bill when you drop it by simply closing her fingers. This seems like it should be easy, but it’s not. After she sees that you have released the bill, it will take her about 0.25 s to react and close her fingers-which is not fast enough to catch the bill. How much time does it take for the bill to fall beyond her grasp? The length of a bill is 16 cm.
asked 2021-02-25
Aurora is planning to participate in an event at her school's field day that requires her to complete tasks at various stations in the fastest time possible. To prepare for the event, she is practicing and keeping track of her time to complete each station. The x-coordinate is the station number, and the y-coordinate is the time in minutes since the start of the race that she completed the task. \(\displaystyle{\left({1},{3}\right)},{\left({2},{6}\right)},{\left({3},{12}\right)},{\left({4},{24}\right)}\)
Part A: Is this data modeling an algebraic sequence or a geometric sequence? Explain your answer.
Part B: Use a recursive formula to determine the time she will complete station 5.
Part C: Use an explicit formula to find the time she will complete the 9th station.

You might be interested in

...