An automobile tire manufacturer collected the data in the table relating tire pressure x​ (in pounds per square​ inch) and mileage​ (in thousands of​ miles). A mathematical model for the data is given by displaystyle​ f{{left({x}right)}}=-{0.554}{x}^{2}+{35.5}{x}-{514}. begin{array}{|c|c|} hline x & Mileage hline 28 & 45 hline 30 & 51 hline 32 & 56 hline 34 & 50 hline 36 & 46 hline end{array} ​(A) Complete the table below. begin{array}{|c|c|} hline x & Mileage & f(x) hline 28 & 45 hline 30 & 51 hline 32 & 56 hline 34 & 50 hline 36 & 46 hline end{array} ​(Round to one decimal place as​ needed.) A. 20602060xf(x) A coordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2. Data points are plotte

Question
Modeling data distributions
asked 2021-03-11
An automobile tire manufacturer collected the data in the table relating tire pressure x​ (in pounds per square​ inch) and mileage​ (in thousands of​ miles). A mathematical model for the data is given by
\(\displaystyle​ f{{\left({x}\right)}}=-{0.554}{x}^{2}+{35.5}{x}-{514}.\)
\(\begin{array}{|c|c|} \hline x & Mileage \\ \hline 28 & 45 \\ \hline 30 & 51\\ \hline 32 & 56\\ \hline 34 & 50\\ \hline 36 & 46\\ \hline \end{array}\)
​(A) Complete the table below.
\(\begin{array}{|c|c|} \hline x & Mileage & f(x) \\ \hline 28 & 45 \\ \hline 30 & 51\\ \hline 32 & 56\\ \hline 34 & 50\\ \hline 36 & 46\\ \hline \end{array}\)
​(Round to one decimal place as​ needed.)
\(A. 20602060xf(x)\)
A coordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2. Data points are plotted at (28,45), (30,51), (32,56), (34,50), and (36,46). A parabola opens downward and passes through the points (28,45.7), (30,52.4), (32,54.7), (34,52.6), and (36,46.0). All points are approximate.
\(B. 20602060xf(x)\)
Acoordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2.
Data points are plotted at (43,30), (45,36), (47,41), (49,35), and (51,31). A parabola opens downward and passes through the points (43,30.7), (45,37.4), (47,39.7), (49,37.6), and (51,31). All points are approximate.
\(C. 20602060xf(x)\)
A coordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2. Data points are plotted at (43,45), (45,51), (47,56), (49,50), and (51,46). A parabola opens downward and passes through the points (43,45.7), (45,52.4), (47,54.7), (49,52.6), and (51,46.0). All points are approximate.
\(D.20602060xf(x)\)
A coordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2. Data points are plotted at (28,30), (30,36), (32,41), (34,35), and (36,31). A parabola opens downward and passes through the points (28,30.7), (30,37.4), (32,39.7), (34,37.6), and (36,31). All points are approximate.
​(C) Use the modeling function​ f(x) to estimate the mileage for a tire pressure of 29
\(\displaystyle​\frac{{{l}{b}{s}}}{{{s}{q}}}\in.\) and for 35
\(\displaystyle​\frac{{{l}{b}{s}}}{{{s}{q}}}\in.\)
The mileage for the tire pressure \(\displaystyle{29}\frac{{{l}{b}{s}}}{{{s}{q}}}\in.\) is
The mileage for the tire pressure \(\displaystyle{35}\frac{{{l}{b}{s}}}{{{s}{q}}}\) in. is
(Round to two decimal places as​ needed.)
(D) Write a brief description of the relationship between tire pressure and mileage.
A. As tire pressure​ increases, mileage decreases to a minimum at a certain tire​ pressure, then begins to increase.
B. As tire pressure​ increases, mileage decreases.
C. As tire pressure​ increases, mileage increases to a maximum at a certain tire​ pressure, then begins to decrease.
D. As tire pressure​ increases, mileage increases.

Answers (1)

2021-03-12
Given that
\(\displaystyle f{{\left({x}\right)}}=-{0.554}{x}^{2}+{35.5}{x}-{514}\)
\(\displaystyle f{{\left({28}\right)}}=-{0.554}{\left({28}\right)}^{2}+{35.5}{\left({28}\right)}-{514}\)
\(\displaystyle=-{434.336}+{994}-{514}\)
\(\displaystyle f{{\left({28}\right)}}={45.67}\)
\(\displaystyle f{{\left({30}\right)}}=-{0.554}{\left({30}\right)}^{2}+{35.5}{\left({30}\right)}-{514}\)
\(\displaystyle=-{498.6}+{1065}-{514}\)
\(\displaystyle f{{\left({30}\right)}}={52.4}\)
\(\displaystyle f{{\left({32}\right)}}=-{0.554}{\left({32}\right)}^{2}+{35.5}{\left({32}\right)}-{514}\)
\(\displaystyle=-{567.296}+{1136}-{514}\)
\(\displaystyle f{{\left({32}\right)}}={54.704}\)
\(\displaystyle f{{\left({34}\right)}}=-{0.554}{\left({34}\right)}{2}+{35.5}{\left({34}\right)}-{514}\)
\(\displaystyle=-{640.424}+{1207}-{514}\)
\(\displaystyle f{{\left({34}\right)}}={52.58}\)
\(\displaystyle f{{\left({36}\right)}}=-{0.554}{\left({36}\right)}^{2}+{35.5}{\left({36}\right)}-{514}\)
\(\displaystyle=-{717.984}+{1278}-{514}\)
\(\displaystyle f{{\left({36}\right)}}={46.02}\)
(A) The completed table is
\(\begin{array}{|c|c|} \hline x & Mileage & f(x) \\ \hline 28 & 45 & 45.67 \\ \hline 30 & 51 & 52.4\\ \hline 32 & 56 & 54.7\\ \hline 34 & 50 & 52.58\\ \hline 36 & 46 & 46.02\\ \hline \end{array}\)
(C) Use the modeling function​ f(x) to estimate the mileage for a tire pressure of \(\displaystyle{29}\frac{{​{l}{b}{s}}}{{{s}{q}}}\) in. and for \(\displaystyle{35}​\frac{{{l}{b}{s}}}{{{s}{q}}}\) in.:
The mileage for the tire pressure \(\displaystyle{29}​\frac{{{l}{b}{s}}}{{{s}{q}}}\) in. is
\(\displaystyle f{{\left({29}\right)}}=-{0.554}{\left({29}\right)}^{2}+{35.5}{\left({29}\right)}-{514}\)
\(\displaystyle=-{465.914}+{1029.5}-{514}\)
\(\displaystyle f{{\left({29}\right)}}={52.59}\)
The mileage for the tire pressure \(\displaystyle{35}​\frac{{{l}{b}{s}}}{{{s}{q}}}\) in. is
\(\displaystyle f{{\left({35}\right)}}=-{0.554}{\left({35}\right)}^{2}+{35.5}{\left({35}\right)}-{514}\)
\(\displaystyle=-{678.65}+{1242.5}-{514}\)
\(\displaystyle f{{\left({35}\right)}}={49.85}\)
​(D) To write a brief description of the relationship between tire pressure and mileage:
From the table it is clear that, as tire pressure increases mileage increases for 28, 30 and attains its maximum value at 32, and began to decrease for 34,36.
Hence, as tire pressure​ increases, mileage increases to a maximum at a certain tire​ pressure, then begins to decrease.
0

Relevant Questions

asked 2020-12-27
The scatter plot below shows the average cost of a designer jacket in a sample of years between 2000 and 2015. The least squares regression line modeling this data is given by \(\widehat{y}=-4815+3.765x.\) A scatterplot has a horizontal axis labeled Year from 2005 to 2015 in increments of 5 and a vertical axis labeled Price ($) from 2660 to 2780 in increments of 20. The following points are plotted: \((2003, 2736), (2004, 2715), (2007, 2675), (2009, 2719), (2013, 270)\). All coordinates are approximate. Interpret the y-intercept of the least squares regression line. Is it feasible? Select the correct answer below: The y-intercept is −4815, which is not feasible because a product cannot have a negative cost. The y-intercept is 3.765, which is not feasible because an expensive product such as a designer jacket cannot have such a low cost. The y-intercept is −4815, which is feasible because it is the value from the regression equation. The y-intercept is 3.765 which is feasible because a product must have a positive cost.
asked 2021-02-06
At what age do babies learn to crawl? Does it take longer to learn in the winter when babies are often bundled in clothes that restrict their movement? Data were collected from parents who brought their babies into the University of Denver Infant Study Center to participate in one of a number of experiments between 1988 and 1991. Parents reported the birth month and the age at which their child was first able to creep or crawl a distance of 4 feet within 1 minute. The resulting data were grouped by month of birth: January, May, and September: \(\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}&{C}{r}{a}{w}{l}\in{g}\ {a}\ge\backslash{h}{l}\in{e}{B}{i}{r}{t}{h}\ {m}{o}{n}{t}{h}&{M}{e}{a}{n}&{S}{t}.{d}{e}{v}.&{n}\backslash{h}{l}\in{e}{J}{a}\nu{a}{r}{y}&{29.84}&{7.08}&{32}\backslash{M}{a}{y}&{28.58}&{8.07}&{27}\backslash{S}{e}{p}{t}{e}{m}{b}{e}{r}&{33.83}&{6.93}&{38}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\) Crawling age is given in weeks. Assume the data represent three independent simple random samples, one from each of the three populations consisting of babies born in that particular month, and that the populations of crawling ages have Normal distributions. A partial ANOVA table is given below. \(\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{S}{o}{u}{r}{c}{e}&{S}{u}{m}\ {o}{f}\ \boxempty{s}&{D}{F}&{M}{e}{a}{n}\ \boxempty\ {F}\backslash{h}{l}\in{e}{G}{r}{o}{u}{p}{s}&{505.26}\backslash{E}{r}{r}{\quad\text{or}\quad}&&&{53.45}\backslash{T}{o}{t}{a}{l}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\) What are the degrees of freedom for the groups term?
asked 2020-12-02
Gastroenterology
We present data relating protein concentration to pancreatic function as measured by trypsin secretion among patients with cystic fibrosis.
If we do not want to assume normality for these distributions, then what statistical procedure can be used to compare the three groups?
Perform the test mentioned in Problem 12.42 and report a p-value. How do your results compare with a parametric analysis of the data?
Relationship between protein concentration \((mg/mL)\) of duodenal secretions to pancreatic function as measured by trypsin secretion:
\(\left[U/\left(k\ \frac{g}{h}r\right)\right]\)
Tapsin secreton [UGA]
\(\leq\ 50\)
\(\begin{array}{|c|c|}\hline \text{Subject number} & \text{Protetion concentration} \\ \hline 1 & 1.7 \\ \hline 2 & 2.0 \\ \hline 3 & 2.0 \\ \hline 4 & 2.2 \\ \hline 5 & 4.0 \\ \hline 6 & 4.0 \\ \hline 7 & 5.0 \\ \hline 8 & 6.7 \\ \hline 9 & 7.8 \\ \hline \end{array}\)
\(51\ -\ 1000\)
\(\begin{array}{|c|c|}\hline \text{Subject number} & \text{Protetion concentration} \\ \hline 1 & 1.4 \\ \hline 2 & 2.4 \\ \hline 3 & 2.4 \\ \hline 4 & 3.3 \\ \hline 5 & 4.4 \\ \hline 6 & 4.7 \\ \hline 7 & 6.7 \\ \hline 8 & 7.9 \\ \hline 9 & 9.5 \\ \hline 10 & 11.7 \\ \hline \end{array}\)
\(>\ 1000\)
\(\begin{array}{|c|c|}\hline \text{Subject number} & \text{Protetion concentration} \\ \hline 1 & 2.9 \\ \hline 2 & 3.8 \\ \hline 3 & 4.4 \\ \hline 4 & 4.7 \\ \hline 5 & 5.5 \\ \hline 6 & 5.6 \\ \hline 7 & 7.4 \\ \hline 8 & 9.4 \\ \hline 9 & 10.3 \\ \hline \end{array}\)
asked 2021-03-05
Suppose the manufacturer of widgets has developed the following table showing the highest price p, in dollars, of a widget at which N widgets can be sold.
\(\begin{array}{|c|c|} \hline Number\ N & Price\ p\\ \hline 200 & 53.00\\ \hline 250 & 52.50\\\hline 300 & 52.00\\ \hline 350 & 51.50\\ \hline \end{array}\)
(a) Find a formula for p in terms of N modeling the data in the table.
\(\displaystyle{p}=\)
(b) Use a formula to express the total monthly revenue R, in dollars, of this manufacturer in a month as a function of the number N of widgets produced in a month.
\(\displaystyle{R}=\)
Is R a linear function of N?
(c) On the basis of the tables in this exercise and using cost, \(\displaystyle{C}={35}{N}+{900}\), use a formula to express the monthly profit P, in dollars, of this manufacturer as a function of the number of widgets produced in a month.
\(\displaystyle{P}=\)
(d) Is P a linear function of N?
asked 2020-11-26
Two drugs, Abraxane and Taxol, are both cancer treatments, yet have differing rates at which they leave a patient’s system. Using terminology from pharmacology, Abraxane leaves the system by so-called “first-order elimination”, which means that the concentration decreases at a constant percentage rate for each unit of time that passes. Taxol leaves the system by “zero-order elimination”, which means that the concentration decreases by a constant amount for each unit of time that passes.
(a) As soon as the infusion of Taxol is completed, the drug concentration in a patient’s blood is 1000 nanograms per milliliter \(\displaystyle{\left(\frac{{{n}{g}}}{{{m}{l}}}\right)}.\) 12 hours later there is \(\displaystyle{50}\frac{{{n}{g}}}{{{m}{l}}}\) left in the patient’s system. Use the data to construct an appropriate formula modeling the blood concentration of Taxol as a function of time after the infusion is completed.
(b) As soon as the infusion of Abraxane is completed, the drug concentration in a patient’s blood is 1000 nanograms per milliliter \(\displaystyle{\left(\frac{{{n}{g}}}{{{m}{l}}}\right)}\). 24 hours later there is \(\displaystyle{50}\frac{{{n}{g}}}{{{m}{l}}}\) left in the patient’s system. Use the data to construct an appropriate formula modeling the blood concentration of Abraxane as a function of time after the infusion is completed.
(c) Find the long-term behavior of the function from part (b). Is this behavior meaningful in the context of the model?
asked 2021-02-25
In general, the highest price p per unit of an item at which a manufacturer can sell N items is not constant but is, rather, a function of N. Suppose the manufacturer of widgets has developed the following table showing the highest price p, in dollars, of a widget at which N widgets can be sold.
\(\begin{array}{|c|c|} \hline Number\ N & Price\ p\\ \hline 250 & 52.50\\ \hline300 & 52.00\\\hline 350 & 51.50\\ \hline 400 & 51.00\\ \hline \end{array}\)
(a) Find a formula for p in terms of N modeling the data in the table.
\(\displaystyle{p}=\)
(b) Use a formula to express the total monthly revenue R, in dollars, of this manufacturer in a month as a function of the number N of widgets produced in a month.
\(\displaystyle{R}=\)
asked 2020-10-23
A random sample of \(\displaystyle{n}_{{1}}={16}\) communities in western Kansas gave the following information for people under 25 years of age.
\(\displaystyle{X}_{{1}}:\) Rate of hay fever per 1000 population for people under 25
\(\begin{array}{|c|c|} \hline 97 & 91 & 121 & 129 & 94 & 123 & 112 &93\\ \hline 125 & 95 & 125 & 117 & 97 & 122 & 127 & 88 \\ \hline \end{array}\)
A random sample of \(\displaystyle{n}_{{2}}={14}\) regions in western Kansas gave the following information for people over 50 years old.
\(\displaystyle{X}_{{2}}:\) Rate of hay fever per 1000 population for people over 50
\(\begin{array}{|c|c|} \hline 94 & 109 & 99 & 95 & 113 & 88 & 110\\ \hline 79 & 115 & 100 & 89 & 114 & 85 & 96\\ \hline \end{array}\)
(i) Use a calculator to calculate \(\displaystyle\overline{{x}}_{{1}},{s}_{{1}},\overline{{x}}_{{2}},{\quad\text{and}\quad}{s}_{{2}}.\) (Round your answers to two decimal places.)
(ii) Assume that the hay fever rate in each age group has an approximately normal distribution. Do the data indicate that the age group over 50 has a lower rate of hay fever? Use \(\displaystyle\alpha={0.05}.\)
(a) What is the level of significance?
State the null and alternate hypotheses.
\(\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}<\mu_{{2}}\)
\(\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}>\mu_{{2}}\)
\(\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}\ne\mu_{{2}}\)
\(\displaystyle{H}_{{0}}:\mu_{{1}}>\mu_{{2}},{H}_{{1}}:\mu_{{1}}=\mu_{{12}}\)
(b) What sampling distribution will you use? What assumptions are you making?
The standard normal. We assume that both population distributions are approximately normal with known standard deviations.
The Student's t. We assume that both population distributions are approximately normal with unknown standard deviations,
The standard normal. We assume that both population distributions are approximately normal with unknown standard deviations,
The Student's t. We assume that both population distributions are approximately normal with known standard deviations,
What is the value of the sample test statistic? (Test the difference \(\displaystyle\mu_{{1}}-\mu_{{2}}\). Round your answer to three decimalplaces.)
What is the value of the sample test statistic? (Test the difference \(\displaystyle\mu_{{1}}-\mu_{{2}}\). Round your answer to three decimal places.)
(c) Find (or estimate) the P-value.
P-value \(\displaystyle>{0.250}\)
\(\displaystyle{0.125}<{P}-\text{value}<{0},{250}\)
\(\displaystyle{0},{050}<{P}-\text{value}<{0},{125}\)
\(\displaystyle{0},{025}<{P}-\text{value}<{0},{050}\)
\(\displaystyle{0},{005}<{P}-\text{value}<{0},{025}\)
P-value \(\displaystyle<{0.005}\)
Sketch the sampling distribution and show the area corresponding to the P-value.
P.vaiue Pevgiue
P-value f P-value
asked 2021-03-07
In an experiment designed to study the effects of illumination level on task performance (“Performance of Complex Tasks Under Different Levels of Illumination,” J. Illuminating Eng., 1976: 235–242), subjects were required to insert a fine-tipped probe into the eyeholes of ten needles in rapid succession both for a low light level with a black background and a higher level with a white background. Each data value is the time (sec) required to complete the task.
\(\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}{S}{u}{b}{j}{e}{c}{t}&{\left({1}\right)}&{\left({2}\right)}&{\left({3}\right)}&{\left({4}\right)}&{\left({5}\right)}&{\left({6}\right)}&{\left({7}\right)}&{\left({8}\right)}&{\left({9}\right)}\backslash{h}{l}\in{e}{B}{l}{a}{c}{k}&{25.85}&{28.84}&{32.05}&{25.74}&{20.89}&{41.05}&{25.01}&{24.96}&{27.47}\backslash{h}{l}\in{e}{W}{h}{i}{t}{e}&{18.28}&{20.84}&{22.96}&{19.68}&{19.509}&{24.98}&{16.61}&{16.07}&{24.59}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\)
Does the data indicate that the higher level of illumination yields a decrease of more than 5 sec in true average task completion time? Test the appropriate hypotheses using the P-value approach.
asked 2021-02-12
What is the optimal time for a scuba diver to be on the bottom of the ocean? That depends on the depth of the dive. The U.S. Navy has done a lot of research on this topic. The Navy defines the "optimal time" to be the time at each depth for the best balance between length of work period and decompression time after surfacing. Let \(\displaystyle{x}=\) depth of dive in meters, and let \(\displaystyle{y}=\) optimal time in hours. A random sample of divers gave the following data.
\(\begin{array}{|c|c|} \hline x & 13.1 & 23.3 & 31.2 & 38.3 & 51.3 &20.5 & 22.7 \\ \hline y & 2.78 & 2.18 & 1.48 & 1.03 & 0.75 & 2.38 & 2.20 \\ \hline \end{array}\)
(a)
Find \(\displaystyleΣ{x},Σ{y},Σ{x}^{2},Σ{y}^{2},Σ{x}{y},{\quad\text{and}\quad}{r}\). (Round r to three decimal places.)
\(\displaystyleΣ{x}=\)
\(\displaystyleΣ{y}=\)
\(\displaystyleΣ{x}^{2}=\)
\(\displaystyleΣ{y}^{2}=\)
\(\displaystyleΣ{x}{y}=\)
\(\displaystyle{r}=\)
(b)
Use a \(1\%\) level of significance to test the claim that \(\displaystyle\rho<{0}\). (Round your answers to two decimal places.)
\(\displaystyle{t}=\)
critical \(\displaystyle{t}=\)
Conclusion
Reject the null hypothesis. There is sufficient evidence that \(\displaystyle\rho<{0}\).Reject the null hypothesis. There is insufficient evidence that \(\displaystyle\rho<{0}\).
Fail to reject the null hypothesis. There is sufficient evidence that \(\displaystyle\rho<{0}\).Fail to reject the null hypothesis. There is insufficient evidence that \(\displaystyle\rho<{0}.\)
(c)
Find \(\displaystyle{S}_{{e}},{a},{\quad\text{and}\quad}{b}\). (Round your answers to four decimal places.)
\(\displaystyle{S}_{{e}}=\)
\(\displaystyle{a}=\)
\(\displaystyle{b}=\)
asked 2020-11-09
Two scatterplots are shown below.
Scatterplot 1
A scatterplot has 14 points.
The horizontal axis is labeled "x" and has values from 30 to 110.
The vertical axis is labeled "y" and has values from 30 to 110.
The points are plotted from approximately (55, 60) up and right to approximately (95, 85).
The points are somewhat scattered.
Scatterplot 2
A scatterplot has 10 points.
The horizontal axis is labeled "x" and has values from 30 to 110.
The vertical axis is labeled "y" and has values from 30 to 110.
The points are plotted from approximately (55, 55) steeply up and right to approximately (70, 90), and then steeply down and right to approximately (85, 60).
The points are somewhat scattered.
Explain why it makes sense to use the least-squares line to summarize the relationship between x and y for one of these data sets but not the other.
Scatterplot 1 seems to show a relationship between x and y, while Scatterplot 2 shows a relationship between the two variables. So it makes sense to use the least squares line to summarize the relationship between x and y for the data set in , but not for the data set in .
...