Calculation:

SabadisO

Answered 2021-09-08
Author has **26469** answers

asked 2021-09-09

Use the table below and answer the questions.

1) P (> 1 car | 2 to 4 kids) = ?

2) P (< 4 kids or \(\displaystyle\le\) 2 cars) = ?

1) P (> 1 car | 2 to 4 kids) = ?

2) P (< 4 kids or \(\displaystyle\le\) 2 cars) = ?

asked 2021-09-02

1) P (< 3 cars | 3 to 5 kids) = ?

2) P ( > 3 kids or \(\displaystyle\ge\) 2 cars) = ?

asked 2021-09-08

\(\displaystyle{P}{\left({A}\right)}=?\)

\(\displaystyle{P}{\left(\frac{{A}}{{B}}\right)}=?\)

\(\displaystyle{P}{\left({X}\right)}=?\)

\(\displaystyle{P}{\left(\frac{{A}}{{X}}\right)}=?\)

asked 2021-09-23

Use the two-way table of data from another student survey to answer the following question.

\(\begin{array}{|c|cc|c|}
\hline
&Like\ Aerobic&Exercise\\
\hline
Like\ Weight\ Lifting&Yes&No&Total\\
\hline
Yes & 7&14&21 \\
\hline
No& 12&7&19\\
\hline
Total&19&21&40\\
\hline
\end{array}\)

What is the marginal relative frequency of students surveyed who like weight lifting?

asked 2021-09-20

\(\begin{array}{|c|cc|c|}
\hline
&Like\ Aerobic&Exercise\\
\hline
Like\ Weight\ Lifting&Yes&No&Total\\
\hline
Yes & 7&14&21 \\
\hline
No& 12&7&19\\
\hline
Total&19&21&40\\
\hline
\end{array}\)

Find the conditional relative frequency that a student likes to lift weights, given that the student likes aerobics.

asked 2021-06-13

1. Who seems to have more variability in their shoe sizes, men or women?

a) Men

b) Women

c) Neither group show variability

d) Flag this Question

2. In general, why use the estimate of \(n-1\) rather than n in the computation of the standard deviation and variance?

a) The estimate n-1 is better because it is used for calculating the population variance and standard deviation

b) The estimate n-1 is never used to calculate the sample variance and standard deviation

c) \(n-1\) provides an unbiased estimate of the population and allows more variability when using a sample and gives a better mathematical estimate of the population

d) The estimate n-1 is better because it is use for calculation of both the population and sample variance as well as standard deviation.

\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 25.7 & M \\ \hline 25.4 & F \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 26.7 & M \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 25.4 & F \\ \hline 25.7 & M \\ \hline 25.7 & F \\ \hline 23.5 & F \\ \hline 23.1 & F \\ \hline 26 & M \\ \hline 23.5 & F \\ \hline 26.7 & F \\ \hline 26 & M \\ \hline 23.1 & F \\ \hline 25.1 & F \\ \hline 27 & M \\ \hline 25.4 & F \\ \hline 23.5 & F \\ \hline 23.8 & F \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline \end{array}\)

\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 27.6 & M \\ \hline 26.9 & F \\ \hline 26 & F \\ \hline 28.4 & M \\ \hline 23.5 & F \\ \hline 27 & F \\ \hline 25.1 & F \\ \hline 28.4 & M \\ \hline 23.1 & F \\ \hline 23.8 & F \\ \hline 26 & F \\ \hline 25.4 & M \\ \hline 23.8 & F \\ \hline 24.8 & M \\ \hline 25.1 & F \\ \hline 24.8 & F \\ \hline 26 & M \\ \hline 25.4 & F \\ \hline 26 & M \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline 27 & M \\ \hline 23.5 & F \\ \hline 29 & F \\ \hline \end{array}\)

a) Men

b) Women

c) Neither group show variability

d) Flag this Question

2. In general, why use the estimate of \(n-1\) rather than n in the computation of the standard deviation and variance?

a) The estimate n-1 is better because it is used for calculating the population variance and standard deviation

b) The estimate n-1 is never used to calculate the sample variance and standard deviation

c) \(n-1\) provides an unbiased estimate of the population and allows more variability when using a sample and gives a better mathematical estimate of the population

d) The estimate n-1 is better because it is use for calculation of both the population and sample variance as well as standard deviation.

\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 25.7 & M \\ \hline 25.4 & F \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 26.7 & M \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 25.4 & F \\ \hline 25.7 & M \\ \hline 25.7 & F \\ \hline 23.5 & F \\ \hline 23.1 & F \\ \hline 26 & M \\ \hline 23.5 & F \\ \hline 26.7 & F \\ \hline 26 & M \\ \hline 23.1 & F \\ \hline 25.1 & F \\ \hline 27 & M \\ \hline 25.4 & F \\ \hline 23.5 & F \\ \hline 23.8 & F \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline \end{array}\)

\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 27.6 & M \\ \hline 26.9 & F \\ \hline 26 & F \\ \hline 28.4 & M \\ \hline 23.5 & F \\ \hline 27 & F \\ \hline 25.1 & F \\ \hline 28.4 & M \\ \hline 23.1 & F \\ \hline 23.8 & F \\ \hline 26 & F \\ \hline 25.4 & M \\ \hline 23.8 & F \\ \hline 24.8 & M \\ \hline 25.1 & F \\ \hline 24.8 & F \\ \hline 26 & M \\ \hline 25.4 & F \\ \hline 26 & M \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline 27 & M \\ \hline 23.5 & F \\ \hline 29 & F \\ \hline \end{array}\)

asked 2021-09-15

The following two-way table displays information about favorite sports cars that resulted from a survey given to all students at Shore High School

.\(\begin{array}{|l|c|c|c|c|} \hline & \text { Corvette (C) } & \text { Porsche (P) } & \text { Ferrari (F) } & \text { Total } \\ \hline \text { Boys (B) } & 90 & 60 & 120 & 270 \\ \hline \text { Girls (G) } & 110 & 141 & 79 & 330 \\ \hline \text { Total } & 200 & 201 & 199 & 600 \\ \hline \end{array}\)

What is the probability that a randomly selected student from this school prefers Corvettes, given that the student is a girl?