# Define g{{\left({x},{y}\right)}}={x}^{2}+{y}^{2}-{4}{x}{y}+{3}{y}+{2}

Define $$\displaystyle g{{\left({x},{y}\right)}}={x}^{2}+{y}^{2}-{4}{x}{y}+{3}{y}+{2}$$

• Questions are typically answered in as fast as 30 minutes

### Plainmath recommends

• Get a detailed answer even on the hardest topics.
• Ask an expert for a step-by-step guidance to learn to do it yourself.

Tuthornt

Possible derivation:
$$\displaystyle\frac{d}{{\left.{d}{x}\right.}}{\left({x}^{2}+{y}^{2}-{4}{x}{y}+{3}{y}+{2}\right)}$$
Differentiate the sum term by term and factor out constants:
$$\displaystyle=\frac{d}{{\left.{d}{x}\right.}}{\left({2}\right)}-{4}{y}{\left(\frac{d}{{\left.{d}{x}\right.}}{\left({x}\right)}\right)}+\frac{d}{{\left.{d}{x}\right.}}{\left({x}^{2}\right)}+\frac{d}{{\left.{d}{x}\right.}}{\left({3}{y}\right)}+\frac{d}{{\left.{d}{x}\right.}}{\left({y}^{2}\right)}$$
The derivative of 2 is zero:
$$\displaystyle=-{4}{y}{\left(\frac{d}{{\left.{d}{x}\right.}}{\left({x}\right)}\right)}+\frac{d}{{\left.{d}{x}\right.}}{\left({x}^{2}\right)}+\frac{d}{{\left.{d}{x}\right.}}{\left({3}{y}\right)}+\frac{d}{{\left.{d}{x}\right.}}{\left({y}^{2}\right)}+{0}$$
Simplify the expression:
$$\displaystyle=-{4}{y}{\left(\frac{d}{{\left.{d}{x}\right.}}{\left({x}\right)}\right)}+\frac{d}{{\left.{d}{x}\right.}}{\left({x}^{2}\right)}+\frac{d}{{\left.{d}{x}\right.}}{\left({3}{y}\right)}+\frac{d}{{\left.{d}{x}\right.}}{\left({y}^{2}\right)}$$
The derivative of x is 1:
$$\displaystyle=\frac{d}{{\left.{d}{x}\right.}}{\left({x}^{2}\right)}+\frac{d}{{\left.{d}{x}\right.}}{\left({3}{y}\right)}+\frac{d}{{\left.{d}{x}\right.}}{\left({y}^{2}\right)}-{1}{4}{y}$$
Use the power rule, $$\displaystyle\frac{d}{{\left.{d}{x}\right.}}{\left({x}^{n}\right)}={n}{x}^{{{n}-{1}}}$$, where n = 2.
$$\displaystyle\frac{d}{{\left.{d}{x}\right.}}{\left({x}^{2}\right)}={2}{x}:$$
$$\displaystyle=-{4}{y}+\frac{d}{{\left.{d}{x}\right.}}{\left({3}{y}\right)}+\frac{d}{{\left.{d}{x}\right.}}{\left({y}^{2}\right)}+{2}{x}$$
The derivative of 3 y is zero:
$$\displaystyle={2}{x}-{4}{y}+\frac{d}{{\left.{d}{x}\right.}}{\left({y}^{2}\right)}+{0}$$
Simplify the expression:
$$\displaystyle={2}{x}-{4}{y}+\frac{d}{{\left.{d}{x}\right.}}{\left({y}^{2}\right)}$$
The derivative of $$\displaystyle{y}^{{{2}}}$$ is zero:
$$= 2 x - 4 y + 0$$
Simplify the expression:
$$= 2 x - 4 y$$
Simplify the expression:
$$= 2 (x - 2 y)$$