Ball A moved at a speed of vA=4 m/s and ball B moved at a speed of vb=8 m/s in the directions as shown in the figure below.

Maiclubk 2021-09-12 Answered
Two balls A and B were Initially 9 m apart. Ball A moved at a speed of vA=4 m/s and ball B moved at a speed of vb=8 m/s in the directions as shown in the figure below.
image

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question

Expert Answer

Alix Ortiz
Answered 2021-09-13 Author has 9243 answers

The answer is given below in the photo
image

Have a similar question?
Ask An Expert
25
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-04-15

A car initially traveling eastward turns north by traveling in a circular path at uniform speed as in the figure below. The length of the arc ABC is 235 m, and the car completes the turn in 33.0 s. (Enter only the answers in the input boxes separately given.)
(a) What is the acceleration when the car is at B located at an angle of 35.0°? Express your answer in terms of the unit vectors \(\displaystyle\hat{{{i}}}\) and \(\displaystyle\hat{{{j}}}\).
1. (Enter in box 1) \(\frac{m}{s^2}\hat{i}+(\text{ Enter in box 2 }) \frac{m}{s^2}\hat{j}\)
(b) Determine the car's average speed.
3. ( Enter in box 3) m/s
(c) Determine its average acceleration during the 33.0-s interval.
4. ( Enter in box 4) \(\displaystyle\frac{{m}}{{s}^{{2}}}\hat{{{i}}}+\)
5. ( Enter in box 5) \(\displaystyle\frac{{m}}{{s}^{{2}}}\hat{{{j}}}\)

asked 2021-02-06
Starting with an initial speed of 5.00 m/s at a height of 0.300 m, a 1.50 kg ball swings downward and strikes a 4.60kg ballthat is at rest, as the drawing shows. a. using the principle of conservation of mechanicalenergy,find the speed of the 1.50 kg ball just before impact b. assuming that the collision is elastic, find the velocities( magnitude and direction ) of both balls just after thecollision c. how high does each abll swing after the collision, ignoringair resistance?
asked 2021-02-19
A 10 kg objectexperiences a horizontal force which causes it to accelerate at 5 \(\displaystyle\frac{{m}}{{s}^{{2}}}\), moving it a distance of 20 m, horizontally.How much work is done by the force?
A ball is connected to a rope and swung around in uniform circular motion.The tension in the rope is measured at 10 N and the radius of thecircle is 1 m. How much work is done in one revolution around the circle?
A 10 kg weight issuspended in the air by a strong cable. How much work is done, perunit time, in suspending the weight?
A 5 kg block is moved up a 30 degree incline by a force of 50 N, parallel to the incline. The coefficient of kinetic friction between the block and the incline is .25. How much work is done by the 50 N force in moving the block a distance of 10 meters? What is the total workdone on the block over the same distance?
What is the kinetic energy of a 2 kg ball that travels a distance of 50 metersin 5 seconds?
A ball is thrown vertically with a velocity of 25 m/s. How high does it go? What is its velocity when it reaches a height of 25 m?
A ball with enough speed can complete a vertical loop. With what speed must the ballenter the loop to complete a 2 m loop? (Keep in mind that the velocity of the ball is not constant throughout the loop).
asked 2021-03-21

In the figure below, the rolling axle, 1.43 m long, is pushed along horizontal rails at a constant speed \(v = 3.36 m/s\).
image
A resistor \(R = 0.325\) ohm is connected to the rails at points a and b, directly opposite each other. (The wheels make good electrical contact with the rails, and so the axle, rails, and R form a closed-loop circuit. The only significant resistance in the circuit is R.) There is a uniform magnetic field \(B = 0.0850 T \)vertically downward. Calculate the induced current I in the resistor and what horizontal force F is required to keep the axle rolling at constant speed?

asked 2021-04-13

A slab of insulating material of uniform thickness d, lying between \(\displaystyle{\frac{{-{d}}}{{{2}}}}\) to \(\displaystyle{\frac{{{d}}}{{{2}}}}\) along the x axis, extends infinitely in the y and z directions, as shown in the figure. The slab has a uniform charge density \(\displaystyle\rho\). The electric field is zero in the middle of the slab, at x=0. Which of the following statements is true of the electric field \(E_{vec}\) at the surface of one side of the slab?

...