#### Didn’t find what you are looking for?

Question # Determine the equation of a conic section...(Hyperbola) Given: center (-9, 1) distance between displaystyle{F}{1}{quadtext{and}quad}{F}{2}={20} units distance between displaystyle{C}{V}{1}{quadtext{and}quad}{C}{V}{2}={4} units orientation = vertical

Conic sections
ANSWERED Determine the equation of a conic section...(Hyperbola) Given: center (-9, 1) distance between $$\displaystyle{F}{1}{\quad\text{and}\quad}{F}{2}={20}$$ units
distance between $$\displaystyle{C}{V}{1}{\quad\text{and}\quad}{C}{V}{2}={4}$$ units orientation = vertical 2021-02-06
Step 1
Given: center (-9, 1)
distance between $$\displaystyle{F}{1}{\quad\text{and}\quad}{F}{2}={20}$$ units
distance between $$\displaystyle{C}{V}{1}{\quad\text{and}\quad}{C}{V}{2}={4}$$ units
orientation = vertical
Step 2
Standard equation of hyperbola
$$\displaystyle\frac{{{\left({y}-{k}\right)}^{2}}}{{a}^{2}}-\frac{{{\left({x}-{h}\right)}^{2}}}{{b}^{2}}={1}$$
where (h,k) is centre and orientation is vertical
We know distance between $$\displaystyle{F}{1}{\quad\text{and}\quad}{F}{2}={2}{C}={20}$$
so $$\displaystyle{C}={10}\ \text{unit and}\ {c}^{2}={a}^{2}+{b}^{2}$$
here center is (-9, 1)
$$\displaystyle{h}=-{9}{\quad\text{and}\quad}{k}={1}$$
length of $$\displaystyle{C}{V}{1}\to{C}{V}{2}={2}{b}$$
$$\displaystyle{2}{b}={4}$$ unit
$$\displaystyle{b}={2}$$ unit
Now from $$\displaystyle{c}^{2}={a}^{2}+{b}^{2}$$
$$\displaystyle{\left({10}\right)}^{2}={a}^{2}+{\left({2}\right)}^{2}$$
$$\displaystyle{100}-{4}={a}^{2}$$
$$\displaystyle{a}=\sqrt{{96}}$$
Step 3
So the equation of hyperbola is
$$\displaystyle\frac{{\left({y}-{1}\right)}^{2}}{{96}}-\frac{{\left({x}+{9}\right)}^{2}}{{4}}={1}$$
where (-9, 1) is centre