Consider a capital budgeting problem with six projects represented by 0-1 text{variables} x1, x2, x3, x4, x5, text{and} x6. a. Write a constraint modeling a situation in which two of the projects 1, 3, and 6 must be undertaken. b. In which situation the constraint "x3 - x5 = 0" is used, explain clearly: c. Write a constraint modeling a situation in which roject 2 or 4 must be undertaken, but not both. d. Write constraints modeling a situation where project 1 cannot be undertaken IF projects 3. also is NOT undertaken. e. Explain clearly the situation in which the following 3 constraints are used simulataneously (together): displaystyle{x}{4}le{x}{1} displaystyle{x}{4}le{x}{3} displaystyle{x}{4}ge{x}{1}+{x}{3}-{1}

Consider a capital budgeting problem with six projects represented by 0-1 text{variables} x1, x2, x3, x4, x5, text{and} x6. a. Write a constraint modeling a situation in which two of the projects 1, 3, and 6 must be undertaken. b. In which situation the constraint "x3 - x5 = 0" is used, explain clearly: c. Write a constraint modeling a situation in which roject 2 or 4 must be undertaken, but not both. d. Write constraints modeling a situation where project 1 cannot be undertaken IF projects 3. also is NOT undertaken. e. Explain clearly the situation in which the following 3 constraints are used simulataneously (together): displaystyle{x}{4}le{x}{1} displaystyle{x}{4}le{x}{3} displaystyle{x}{4}ge{x}{1}+{x}{3}-{1}

Question
Modeling
asked 2021-03-02
Consider a capital budgeting problem with six projects represented by \(0-1\ \text{variables}\ x1,\ x2,\ x3,\ x4,\ x5,\ \text{and}\ x6.\)
a. Write a constraint modeling a situation in which two of the projects 1, 3, and 6 must be undertaken.
b. In which situation the constraint "\(x3\ -\ x5 = 0\)" is used, explain clearly:
c. Write a constraint modeling a situation in which roject 2 or 4 must be undertaken, but not both.
d. Write constraints modeling a situation where project 1 cannot be undertaken IF projects 3. also is NOT undertaken.
e. Explain clearly the situation in which the following 3 constraints are used simulataneously (together):
\(\displaystyle{x}{4}\le{x}{1}\)
\(\displaystyle{x}{4}\le{x}{3}\)
\(\displaystyle{x}{4}\ge{x}{1}+{x}{3}-{1}\)

Answers (1)

2021-03-03

Since you have posted multiple sub parts questions but according to guidelines, we will solve first three sub parts for you. For rest of the sub parts resubmit the question again and specify the part you want us to solve.
Consider a capital budgeting problem with 6 projects represented by 0 or 1 and variables \(\displaystyle{x}_{{1}},{x}_{{2}},{x}_{{3}},{x}_{{4}},{x}_{{5}},{x}_{{6}}.\)
For part (a) it is required to find the constraint modelling a situation in which two of the project 1,3 and 6 must be undertaken.
\(\displaystyle{x}_{{1}}+{x}_{{3}}+{x}_{{6}}\ge{2}\) For part (b) it is required to find the situation of the constraint \(\displaystyle{x}_{{3}}-{x}_{{5}}={0}.\)
constraint: \(\displaystyle{x}_{{3}}-{x}_{{5}}={0}\)
Project 3 and 5 must be selected together and none of them cannot be selected alone
\(\displaystyle\text{so}\ <\ {\left({x}_{{3}},{x}_{{5}}\right)}={\left({1},{1}\right)}{\quad\text{or}\quad}{\left({0},{0}\right)}\)
\(\displaystyle\Rightarrow{x}_{{3}}-{x}_{{5}}={0}\)
For part (c) it is required to write a constraint modelling a situation in which project 2 or 4 must be taken but not both.
\(\displaystyle{x}_{{2}}+{x}_{{4}}={1}\)
From the above constraint it is assure that one of the project is taken at a time not both as either
\(0\ +\ 1 = 1\ \text{or}\ 1\ +\ 0 = 1\)

0

Relevant Questions

asked 2021-03-11
Consider a capital budgeting problem with seven projects represented by binary (0 or 1) variables \(X_{1},\ X_{2},\ X_{3},\ X_{4},\ X_{5}, X_{6}, X_{7}\). Write a constraint modeling the situation in which only 2 of the projects from \(1,\ 2,\ 3\ and\ 4\) must be selected. Write a constraint modeling the situation in which at least 2 of the project from \(1,\ 3,\ 4,\ and\ 7\) must be selected. Write a constraint modeling the situation project 3 or 6 must be selected, but not both. Write a constraint modeling the situation in which at most 4 projects from the 7 can be selected.
asked 2021-02-25
We will now add support for register-memory ALU operations to the classic five-stage RISC pipeline. To offset this increase in complexity, all memory addressing will be restricted to register indirect (i.e., all addresses are simply a value held in a register; no offset or displacement may be added to the register value). For example, the register-memory instruction add x4, x5, (x1) means add the contents of register x5 to the contents of the memory location with address equal to the value in register x1 and put the sum in register x4. Register-register ALU operations are unchanged. The following items apply to the integer RISC pipeline:
a. List a rearranged order of the five traditional stages of the RISC pipeline that will support register-memory operations implemented exclusively by register indirect addressing.
b. Describe what new forwarding paths are needed for the rearranged pipeline by stating the source, destination, and information transferred on each needed new path.
c. For the reordered stages of the RISC pipeline, what new data hazards are created by this addressing mode? Give an instruction sequence illustrating each new hazard.
d. List all of the ways that the RISC pipeline with register-memory ALU operations can have a different instruction count for a given program than the original RISC pipeline. Give a pair of specific instruction sequences, one for the original pipeline and one for the rearranged pipeline, to illustrate each way.
Hint for (d): Give a pair of instruction sequences where the RISC pipeline has “more” instructions than the reg-mem architecture. Also give a pair of instruction sequences where the RISC pipeline has “fewer” instructions than the reg-mem architecture.
asked 2020-12-25
Case: Dr. Jung’s Diamonds Selection
With Christmas coming, Dr. Jung became interested in buying diamonds for his wife. After perusing the Web, he learned about the “4Cs” of diamonds: cut, color, clarity, and carat. He knew his wife wanted round-cut earrings mounted in white gold settings, so he immediately narrowed his focus to evaluating color, clarity, and carat for that style earring.
After a bit of searching, Dr. Jung located a number of earring sets that he would consider purchasing. But he knew the pricing of diamonds varied considerably. To assist in his decision making, Dr. Jung decided to use regression analysis to develop a model to predict the retail price of different sets of round-cut earrings based on their color, clarity, and carat scores. He assembled the data in the file Diamonds.xls for this purpose. Use this data to answer the following questions for Dr. Jung.
1) Prepare scatter plots showing the relationship between the earring prices (Y) and each of the potential independent variables. What sort of relationship does each plot suggest?
2) Let X1, X2, and X3 represent diamond color, clarity, and carats, respectively. If Dr. Jung wanted to build a linear regression model to estimate earring prices using these variables, which variables would you recommend that he use? Why?
3) Suppose Dr. Jung decides to use clarity (X2) and carats (X3) as independent variables in a regression model to predict earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics?
4) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. Which sets of earrings appear to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase?
5) Dr. Jung now remembers that it sometimes helps to perform a square root transformation on the dependent variable in a regression problem. Modify your spreadsheet to include a new dependent variable that is the square root on the earring prices (use Excel’s SQRT( ) function). If Dr. Jung wanted to build a linear regression model to estimate the square root of earring prices using the same independent variables as before, which variables would you recommend that he use? Why?
1
6) Suppose Dr. Jung decides to use clarity (X2) and carats (X3) as independent variables in a regression model to predict the square root of the earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics?
7) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. (Remember, your model estimates the square root of the earring prices. So you must actually square the model’s estimates to convert them to price estimates.) Which sets of earring appears to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase?
8) Dr. Jung now also remembers that it sometimes helps to include interaction terms in a regression model—where you create a new independent variable as the product of two of the original variables. Modify your spreadsheet to include three new independent variables, X4, X5, and X6, representing interaction terms where: X4 = X1 × X2, X5 = X1 × X3, and X6 = X2 × X3. There are now six potential independent variables. If Dr. Jung wanted to build a linear regression model to estimate the square root of earring prices using the same independent variables as before, which variables would you recommend that he use? Why?
9) Suppose Dr. Jung decides to use color (X1), carats (X3) and the interaction terms X4 (color * clarity) and X5 (color * carats) as independent variables in a regression model to predict the square root of the earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics?
10) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. (Remember, your model estimates the square root of the earring prices. So you must square the model’s estimates to convert them to actual price estimates.) Which sets of earrings appear to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase?
asked 2020-12-02
c. Write a constraint modeling a situation in which project 1 or 4 must be undertaken, but not both.
asked 2021-05-05

A random sample of \( n_1 = 14 \) winter days in Denver gave a sample mean pollution index \( x_1 = 43 \).
Previous studies show that \( \sigma_1 = 19 \).
For Englewood (a suburb of Denver), a random sample of \( n_2 = 12 \) winter days gave a sample mean pollution index of \( x_2 = 37 \).
Previous studies show that \( \sigma_2 = 13 \).
Assume the pollution index is normally distributed in both Englewood and Denver.
(a) State the null and alternate hypotheses.
\( H_0:\mu_1=\mu_2.\mu_1>\mu_2 \)
\( H_0:\mu_1<\mu_2.\mu_1=\mu_2 \)
\( H_0:\mu_1=\mu_2.\mu_1<\mu_2 \)
\( H_0:\mu_1=\mu_2.\mu_1\neq\mu_2 \)
(b) What sampling distribution will you use? What assumptions are you making? NKS The Student's t. We assume that both population distributions are approximately normal with known standard deviations.
The standard normal. We assume that both population distributions are approximately normal with unknown standard deviations.
The standard normal. We assume that both population distributions are approximately normal with known standard deviations.
The Student's t. We assume that both population distributions are approximately normal with unknown standard deviations.
(c) What is the value of the sample test statistic? Compute the corresponding z or t value as appropriate.
(Test the difference \( \mu_1 - \mu_2 \). Round your answer to two decimal places.) NKS (d) Find (or estimate) the P-value. (Round your answer to four decimal places.)
(e) Based on your answers in parts (i)−(iii), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level \alpha?
At the \( \alpha = 0.01 \) level, we fail to reject the null hypothesis and conclude the data are not statistically significant.
At the \( \alpha = 0.01 \) level, we reject the null hypothesis and conclude the data are statistically significant.
At the \( \alpha = 0.01 \) level, we fail to reject the null hypothesis and conclude the data are statistically significant.
At the \( \alpha = 0.01 \) level, we reject the null hypothesis and conclude the data are not statistically significant.
(f) Interpret your conclusion in the context of the application.
Reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Fail to reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Fail to reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver. (g) Find a 99% confidence interval for
\( \mu_1 - \mu_2 \).
(Round your answers to two decimal places.)
lower limit
upper limit
(h) Explain the meaning of the confidence interval in the context of the problem.
Because the interval contains only positive numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is greater than that of Denver.
Because the interval contains both positive and negative numbers, this indicates that at the 99% confidence level, we can not say that the mean population pollution index for Englewood is different than that of Denver.
Because the interval contains both positive and negative numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is greater than that of Denver.
Because the interval contains only negative numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is less than that of Denver.
asked 2021-03-02

Let \(x_1 = 94,210, x_2 = 8631, x_3 = 1440, x_4 = 133,\) and \(x5 = 34.\) Calculate each of the following, using four-digit decimal floating-point arithmetic: \(x1 + ((x2 + x3) + (x4 + x5))\)

asked 2021-05-16
Consider the curves in the first quadrant that have equationsy=Aexp(7x), where A is a positive constant. Different valuesof A give different curves. The curves form a family,F. Let P=(6,6). Let C be the number of the family Fthat goes through P.
A. Let y=f(x) be the equation of C. Find f(x).
B. Find the slope at P of the tangent to C.
C. A curve D is a perpendicular to C at P. What is the slope of thetangent to D at the point P?
D. Give a formula g(y) for the slope at (x,y) of the member of Fthat goes through (x,y). The formula should not involve A orx.
E. A curve which at each of its points is perpendicular to themember of the family F that goes through that point is called anorthogonal trajectory of F. Each orthogonal trajectory to Fsatisfies the differential equation dy/dx = -1/g(y), where g(y) isthe answer to part D.
Find a function of h(y) such that x=h(y) is the equation of theorthogonal trajectory to F that passes through the point P.
asked 2021-05-18
The student engineer of a campus radio station wishes to verify the effectivencess of the lightning rod on the antenna mast. The unknown resistance \(\displaystyle{R}_{{x}}\) is between points C and E. Point E is a "true ground", but is inaccessible for direct measurement because the stratum in which it is located is several meters below Earth's surface. Two identical rods are driven into the ground at A and B, introducing an unknown resistance \(\displaystyle{R}_{{y}}\). The procedure for finding the unknown resistance \(\displaystyle{R}_{{x}}\) is as follows. Measure resistance \(\displaystyle{R}_{{1}}\) between points A and B. Then connect A and B with a heavy conducting wire and measure resistance \(\displaystyle{R}_{{2}}\) between points A and C.Derive a formula for \(\displaystyle{R}_{{x}}\) in terms of the observable resistances \(\displaystyle{R}_{{1}}\) and \(\displaystyle{R}_{{2}}\). A satisfactory ground resistance would be \(\displaystyle{R}_{{x}}{<}{2.0}\) Ohms. Is the grounding of the station adequate if measurments give \(\displaystyle{R}_{{1}}={13}{O}{h}{m}{s}\) and R_2=6.0 Ohms?
asked 2021-04-25
A wagon with two boxes of Gold, having total mass 300 kg, is cutloose from the hoses by an outlaw when the wagon is at rest 50m upa 6.0 degree slope. The outlaw plans to have the wagon roll downthe slope and across the level ground, and then fall into thecanyon where his confederates wait. But in a tree 40m from thecanyon edge wait the Lone Ranger (mass 75.0kg) and Tonto (mass60.0kg). They drop vertically into the wagon as it passes beneaththem. a) if they require 5.0 s to grab the gold and jump out, willthey make it before the wagon goes over the edge? b) When the twoheroes drop into the wagon, is the kinetic energy of the system ofthe heroes plus the wagon conserved? If not, does it increase ordecrease and by how much?
asked 2021-05-10
Hypothetical potential energy curve for aparticle of mass m
If the particle is released from rest at position r0, its speed atposition 2r0, is most nearly
a) \(\displaystyle{\left({\frac{{{8}{U}{o}}}{{{m}}}}\right)}^{{1}}{\left\lbrace/{2}\right\rbrace}\)
b) \(\displaystyle{\left({\frac{{{6}{U}{o}}}{{{m}}}}\right)}^{{\frac{{1}}{{2}}}}\)
c) \(\displaystyle{\left({\frac{{{4}{U}{o}}}{{{m}}}}\right)}^{{\frac{{1}}{{2}}}}\)
d) \(\displaystyle{\left({\frac{{{2}{U}{o}}}{{{m}}}}\right)}^{{\frac{{1}}{{2}}}}\)
e) \(\displaystyle{\left({\frac{{{U}{o}}}{{{m}}}}\right)}^{{\frac{{1}}{{2}}}}\)
if the potential energy function is given by
\(\displaystyle{U}{\left({r}\right)}={b}{r}^{{P}}-\frac{{3}}{{2}}\rbrace+{c}\)
where b and c are constants
which of the following is an edxpression of the force on theparticle?
1) \(\displaystyle{\frac{{{3}{b}}}{{{2}}}}{\left({r}^{{-\frac{{5}}{{2}}}}\right)}\)
2) \(\displaystyle{\frac{{{3}{b}}}{{{2}}}}{\left\lbrace{3}{b}\right\rbrace}{\left\lbrace{2}\right\rbrace}{\left({r}^{{-\frac{{1}}{{2}}}}\right)}\)
3) \(\displaystyle{\frac{{{3}{b}}}{{{2}}}}{\left\lbrace{3}\right\rbrace}{\left\lbrace{2}\right\rbrace}{\left({r}^{{-\frac{{1}}{{2}}}}\right)}\)
4) \(\displaystyle{2}{b}{\left({r}^{{-\frac{{1}}{{2}}}}\right)}+{c}{r}\)
5) \(\displaystyle{\frac{{{3}{b}}}{{{2}}}}{\left\lbrace{2}{b}\right\rbrace}{\left\lbrace{5}\right\rbrace}{\left({r}^{{-\frac{{5}}{{2}}}}\right)}+{c}{r}\)
...