Mathematical modeling is about constructing one or two equations that represent real life situations. What are these math models used for? Provide at least two equations that can be used in the real world. For example: The equation s = 30 h + 1000 can be used to find your salary given the fact you earn a fixed salary of $1000 per month, plus $30 per hours. Here s represents the total salary and h is the number of hours you worked.

Mathematical modeling is about constructing one or two equations that represent real life situations. What are these math models used for? Provide at least two equations that can be used in the real world. For example: The equation s = 30 h + 1000 can be used to find your salary given the fact you earn a fixed salary of $1000 per month, plus $30 per hours. Here s represents the total salary and h is the number of hours you worked.

Question
Modeling
asked 2021-03-07
Mathematical modeling is about constructing one or two equations that represent real life situations. What are these math models used for? Provide at least two equations that can be used in the real world. For example: The equation \(s = 30\ h\ +\ 1000\) can be used to find your salary given the fact you earn a fixed salary of $1000 per month, plus $30 per hours. Here s represents the total salary and h is the number of hours you worked.

Answers (1)

2021-03-08

Mathematical modelings are used to represent the real problem situations in mathematical concepts. It is used in almost every field, natural sciences, engineering disciplines, social sciences etc.
Mathematical modeling is done by analyzing a problem, formulating it and computing solutions and hence validating the results.
It helps in describing about different systems and effects of different components, to make predictions regarding the behavior, to make estimations about real life events, etc.
Examples:
1. Cost of taxi drive.
Suppose that for a taxi ride, there is a service charge of $9 and another charge of $0.25 per mile for the trip. If x is the number of miles travelled and y is the cost of the taxi ride, then the linear equation for the cost will be,
\(y = 0.25\ \times\ 49\)
2. Dimensions of a plot.
The area of a rectangular plot is 1.00cm. The width of the plot is twice its length. Then, the dimensions of the plot can be obtained.
Consider l as the length of the plot and w as the width of the plot.
Then, \(w = 2l\) and the following equation is formulated.
\(l\ \times\ 2l = 100\ cm^{2}\)
On solving the above equation, the dimensions of the plot can be obtained.

0

Relevant Questions

asked 2021-04-11
The equation F=−vex(dm/dt) for the thrust on a rocket, can also be applied to an airplane propeller. In fact, there are two contributions to the thrust: one positive and one negative. The positive contribution comes from air pushed backward, away from the propeller (so dm/dt<0), at a speed vex relative to the propeller. The negative contribution comes from this same quantity of air flowing into the front of the propeller (so dm/dt>0) at speed v, equal to the speed of the airplane through the air.
For a Cessna 182 (a single-engine airplane) flying at 130 km/h, 150 kg of air flows through the propeller each second and the propeller develops a net thrust of 1300 N. Determine the speed increase (in km/h) that the propeller imparts to the air.
asked 2021-05-05

A random sample of \( n_1 = 14 \) winter days in Denver gave a sample mean pollution index \( x_1 = 43 \).
Previous studies show that \( \sigma_1 = 19 \).
For Englewood (a suburb of Denver), a random sample of \( n_2 = 12 \) winter days gave a sample mean pollution index of \( x_2 = 37 \).
Previous studies show that \( \sigma_2 = 13 \).
Assume the pollution index is normally distributed in both Englewood and Denver.
(a) State the null and alternate hypotheses.
\( H_0:\mu_1=\mu_2.\mu_1>\mu_2 \)
\( H_0:\mu_1<\mu_2.\mu_1=\mu_2 \)
\( H_0:\mu_1=\mu_2.\mu_1<\mu_2 \)
\( H_0:\mu_1=\mu_2.\mu_1\neq\mu_2 \)
(b) What sampling distribution will you use? What assumptions are you making? NKS The Student's t. We assume that both population distributions are approximately normal with known standard deviations.
The standard normal. We assume that both population distributions are approximately normal with unknown standard deviations.
The standard normal. We assume that both population distributions are approximately normal with known standard deviations.
The Student's t. We assume that both population distributions are approximately normal with unknown standard deviations.
(c) What is the value of the sample test statistic? Compute the corresponding z or t value as appropriate.
(Test the difference \( \mu_1 - \mu_2 \). Round your answer to two decimal places.) NKS (d) Find (or estimate) the P-value. (Round your answer to four decimal places.)
(e) Based on your answers in parts (i)−(iii), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level \alpha?
At the \( \alpha = 0.01 \) level, we fail to reject the null hypothesis and conclude the data are not statistically significant.
At the \( \alpha = 0.01 \) level, we reject the null hypothesis and conclude the data are statistically significant.
At the \( \alpha = 0.01 \) level, we fail to reject the null hypothesis and conclude the data are statistically significant.
At the \( \alpha = 0.01 \) level, we reject the null hypothesis and conclude the data are not statistically significant.
(f) Interpret your conclusion in the context of the application.
Reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Fail to reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Fail to reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver. (g) Find a 99% confidence interval for
\( \mu_1 - \mu_2 \).
(Round your answers to two decimal places.)
lower limit
upper limit
(h) Explain the meaning of the confidence interval in the context of the problem.
Because the interval contains only positive numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is greater than that of Denver.
Because the interval contains both positive and negative numbers, this indicates that at the 99% confidence level, we can not say that the mean population pollution index for Englewood is different than that of Denver.
Because the interval contains both positive and negative numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is greater than that of Denver.
Because the interval contains only negative numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is less than that of Denver.
asked 2020-10-23
The table below shows the number of people for three different race groups who were shot by police that were either armed or unarmed. These values are very close to the exact numbers. They have been changed slightly for each student to get a unique problem.
Suspect was Armed:
Black - 543
White - 1176
Hispanic - 378
Total - 2097
Suspect was unarmed:
Black - 60
White - 67
Hispanic - 38
Total - 165
Total:
Black - 603
White - 1243
Hispanic - 416
Total - 2262
Give your answer as a decimal to at least three decimal places.
a) What percent are Black?
b) What percent are Unarmed?
c) In order for two variables to be Independent of each other, the P \((A and B) = P(A) \cdot P(B) P(A and B) = P(A) \cdot P(B).\)
This just means that the percentage of times that both things happen equals the individual percentages multiplied together (Only if they are Independent of each other).
Therefore, if a person's race is independent of whether they were killed being unarmed then the percentage of black people that are killed while being unarmed should equal the percentage of blacks times the percentage of Unarmed. Let's check this. Multiply your answer to part a (percentage of blacks) by your answer to part b (percentage of unarmed).
Remember, the previous answer is only correct if the variables are Independent.
d) Now let's get the real percent that are Black and Unarmed by using the table?
If answer c is "significantly different" than answer d, then that means that there could be a different percentage of unarmed people being shot based on race. We will check this out later in the course.
Let's compare the percentage of unarmed shot for each race.
e) What percent are White and Unarmed?
f) What percent are Hispanic and Unarmed?
If you compare answers d, e and f it shows the highest percentage of unarmed people being shot is most likely white.
Why is that?
This is because there are more white people in the United States than any other race and therefore there are likely to be more white people in the table. Since there are more white people in the table, there most likely would be more white and unarmed people shot by police than any other race. This pulls the percentage of white and unarmed up. In addition, there most likely would be more white and armed shot by police. All the percentages for white people would be higher, because there are more white people. For example, the table contains very few Hispanic people, and the percentage of people in the table that were Hispanic and unarmed is the lowest percentage.
Think of it this way. If you went to a college that was 90% female and 10% male, then females would most likely have the highest percentage of A grades. They would also most likely have the highest percentage of B, C, D and F grades
The correct way to compare is "conditional probability". Conditional probability is getting the probability of something happening, given we are dealing with just the people in a particular group.
g) What percent of blacks shot and killed by police were unarmed?
h) What percent of whites shot and killed by police were unarmed?
i) What percent of Hispanics shot and killed by police were unarmed?
You can see by the answers to part g and h, that the percentage of blacks that were unarmed and killed by police is approximately twice that of whites that were unarmed and killed by police.
j) Why do you believe this is happening?
Do a search on the internet for reasons why blacks are more likely to be killed by police. Read a few articles on the topic. Write your response using the articles as references. Give the websites used in your response. Your answer should be several sentences long with at least one website listed. This part of this problem will be graded after the due date.
asked 2021-05-27
The following table represents the Frequency Distribution and Cumulative Distributions for this data set: 12, 13, 17, 18, 18, 24, 26, 27, 27, 30, 30, 35, 37, 41, 42, 43, 44, 46, 53, 58 Class Frequency Relative Cumulative Frequency Frequency 10 but less than 20 5 20 but less than 30 4 30 but less than 4 4 40 but less than 50 5 50 but less than 60 2 TOTAL What is the Relative Frequency for the class: 50 but less than 60? State you answer as a value with exactly two digits after the decimal. for example 0.30 or 0.35
asked 2021-06-09
The following table represents the Frequency Distribution and Cumulative Distributions for this data set: 12, 13, 17, 18, 18, 24, 26, 27, 27, 30, 30, 35, 37, 41, 42, 43, 44, 46, 53, 58 Class Frequency Relative Cumulative Frequency Frequency 10 but less than 20 5 20 but less than 30 4 30 but less than 4 4 40 but less than 50 5 50 but less than 60 2 TOTAL What is the Relative Frequency for the class: 20 but less than 30? State you answer as a value with exactly two digits after the decimal. for example 0.30 or 0.35
asked 2021-05-11
The following table represents the Frequency Distribution and Cumulative Distributions for this data set: 12, 13, 17, 18, 18, 24, 26, 27, 27, 30, 30, 35, 37, 41, 42, 43, 44, 46, 53, 58 Class Frequency Relative Cumulative Frequency Frequency 10 but less than 20 5 20 but less than 30 4 30 but less than 4 4 40 but less than 50 5 50 but less than 60 2 TOTAL What is the Relative Frequency for the class: 40 but less than 50? State you answer as a value with exactly two digits after the decimal. for example 0.30 or 0.35
asked 2021-02-25
We will now add support for register-memory ALU operations to the classic five-stage RISC pipeline. To offset this increase in complexity, all memory addressing will be restricted to register indirect (i.e., all addresses are simply a value held in a register; no offset or displacement may be added to the register value). For example, the register-memory instruction add x4, x5, (x1) means add the contents of register x5 to the contents of the memory location with address equal to the value in register x1 and put the sum in register x4. Register-register ALU operations are unchanged. The following items apply to the integer RISC pipeline:
a. List a rearranged order of the five traditional stages of the RISC pipeline that will support register-memory operations implemented exclusively by register indirect addressing.
b. Describe what new forwarding paths are needed for the rearranged pipeline by stating the source, destination, and information transferred on each needed new path.
c. For the reordered stages of the RISC pipeline, what new data hazards are created by this addressing mode? Give an instruction sequence illustrating each new hazard.
d. List all of the ways that the RISC pipeline with register-memory ALU operations can have a different instruction count for a given program than the original RISC pipeline. Give a pair of specific instruction sequences, one for the original pipeline and one for the rearranged pipeline, to illustrate each way.
Hint for (d): Give a pair of instruction sequences where the RISC pipeline has “more” instructions than the reg-mem architecture. Also give a pair of instruction sequences where the RISC pipeline has “fewer” instructions than the reg-mem architecture.
asked 2021-03-07
This problem is about the equation
dP/dt = kP-H , P(0) = Po,
where k > 0 and H > 0 are constants.
If H = 0, you have dP/dt = kP , which models expontialgrowth. Think of H as a harvesting term, tending to reducethe rate of growth; then there ought to be a value of H big enoughto prevent exponential growth.
Problem: find acondition on H, involving \(\displaystyle{P}_{{0}}\) and k, that will prevent solutions from growing exponentially.
asked 2021-05-17
Two electronic components of a missile system work in harmony for the success of the total system. Let X and Y denote the life in hours of the two components. The joint density of X and Y is
\(f(x,y)=ye^{-y(1+x)}, x,y>0\)
What is the probability that the lives of X component will exceed 2 hours given that the life of Y did not exceed 5 hours?
asked 2021-02-19
A 10 kg objectexperiences a horizontal force which causes it to accelerate at 5 \(\displaystyle\frac{{m}}{{s}^{{2}}}\), moving it a distance of 20 m, horizontally.How much work is done by the force?
A ball is connected to a rope and swung around in uniform circular motion.The tension in the rope is measured at 10 N and the radius of thecircle is 1 m. How much work is done in one revolution around the circle?
A 10 kg weight issuspended in the air by a strong cable. How much work is done, perunit time, in suspending the weight?
A 5 kg block is moved up a 30 degree incline by a force of 50 N, parallel to the incline. The coefficient of kinetic friction between the block and the incline is .25. How much work is done by the 50 N force in moving the block a distance of 10 meters? What is the total workdone on the block over the same distance?
What is the kinetic energy of a 2 kg ball that travels a distance of 50 metersin 5 seconds?
A ball is thrown vertically with a velocity of 25 m/s. How high does it go? What is its velocity when it reaches a height of 25 m?
A ball with enough speed can complete a vertical loop. With what speed must the ballenter the loop to complete a 2 m loop? (Keep in mind that the velocity of the ball is not constant throughout the loop).
...