Determine the algebraic modeling which of the following data sets are linear and which are exponential. For the linear sets, determine the slope.

Determine the algebraic modeling which of the following data sets are linear and which are exponential. For the linear sets, determine the slope. For the exponential sets, determine the growth factor or the decay factor
a) $\begin{array}{|cccccccc|}\hline x& -2& -1& 0& 1& 2& 3& 4\\ y& \frac{1}{9}& \frac{1}{3}& 1& 3& 9& 27& 81\\ \hline\end{array}$

b) $\begin{array}{|cccccccc|}\hline x& -2& -1& 0& 1& 2& 3& 4\\ y& 2& 2.6& 3.2& 3.8& 4.4& 5.0& 5.6\\ \hline\end{array}$

c) $\begin{array}{|cccccccc|}\hline x& -2& -1& 0& 1& 2& 3& 4\\ y& 3.00& 5.0& 7& 9& 11& 13& 15\\ \hline\end{array}$

d) $\begin{array}{|cccccccc|}\hline x& -2& -1& 0& 1& 2& 3& 4\\ y& 5.25& 2.1& 0.84& 0.336& 0.1344& 0.5376& 0.021504\\ \hline\end{array}$

You can still ask an expert for help

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

Mayme
Part (a)
Given data set is
$\begin{array}{|cccccccc|}\hline x& -2& -1& 0& 1& 2& 3& 4\\ y& \frac{1}{9}& \frac{1}{3}& 1& 3& 9& 27& 81\\ \hline\end{array}$

Hence given data set is exponential.
Since y is increasing, so model is growth model.
Growth factor$=3$
Part b)
Given data set is
$\begin{array}{|cccccccc|}\hline x& -2& -1& 0& 1& 2& 3& 4\\ y& 2& 2.6& 3.2& 3.8& 4.4& 5.0& 5.6\\ \hline\end{array}$
$\therefore y\left(1\right)-y\left(0\right)=0.6\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}y\left(2\right)-y\left(1\right)=0.6$
Hence data set is linear.
Slope $=\frac{y\left(1\right)-y\left(0\right)}{1-0}=\frac{3.8-3.2}{1}=0.6$
Part c)
Given data set is
$\begin{array}{|cccccccc|}\hline x& -2& -1& 0& 1& 2& 3& 4\\ y& 3.00& 5.0& 7& 9& 11& 13& 15\\ \hline\end{array}$
$\therefore y\left(1\right)-y\left(0\right)=2\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}y\left(2\right)-y\left(1\right)=2$
Hence data set is linear.
Slope $=\frac{y\left(1\right)-y\left(0\right)}{1-0}=\frac{9-7}{1}=2$
Part d)
Given data set is
$\begin{array}{|cccccccc|}\hline x& -2& -1& 0& 1& 2& 3& 4\\ y& 5.25& 2.1& 0.84& 0.336& 0.1344& 0.5376& 0.021504\\ \hline\end{array}$
$\therefore \frac{y\left(1\right)}{y\left(0\right)}=\frac{0.336}{0.84}=0.4$
Hence given data set is exponential.
Since y is decreasing, so model is decay model.
Decay factor $=0.4$