Given displaystyle sin{{left(alpharight)}}=frac{4}{{9}}{quadtext{and}quad}pitext{/}{2}

Question
Decimals
asked 2021-03-09
Given \(\displaystyle \sin{{\left(\alpha\right)}}=\frac{4}{{9}}{\quad\text{and}\quad}\pi\text{/}{2}<\alpha<\pi\)</span>,
find the exact value of \(\displaystyle \sin{{\left(\alpha\text{/}{2}\right)}}.\)

Answers (1)

2021-03-10
Step 1
\(\displaystyle\frac{\pi}{{2}}<\alpha<\pi\)</span>
\(\displaystyle\frac{{\frac{\pi}{{2}}}}{{2}}<\frac{\alpha}{{2}}<\frac{\pi}{{2}}\)</span>
\(\displaystyle\frac{\pi}{{4}}<\frac{\alpha}{{2}}<\frac{\pi}{{2}}\)</span>
So, \(\displaystyle\frac{\alpha}{{2}}\) in forst quadrant.
In first quadrant sin is positive.
Step 2 \(\displaystyle \sin{{\left(\frac{\alpha}{{2}}\right)}}=\sqrt{{\frac{{{1}- \cos{\alpha}}}{{2}}}}\)
So, we have to find cos alpha from \(\displaystyle \sin{\alpha}\)
\(\displaystyle\frac{\pi}{{2}}<\alpha<\pi\)</span> is second quadrant.
There \(\displaystyle \cos{\alpha}\) is negative
\(\displaystyle \cos{\alpha}=-\sqrt{{{1}-{{\sin}^{2}\alpha}}}=-\sqrt{{{1}-{\left(\frac{4}{{9}}\right)}^{2}}}=-\sqrt{{{1}-\frac{16}{{81}}}}=-\frac{\sqrt{{65}}}{{9}}\)
Step 3
Plug \(\displaystyle \cos{\alpha}=-\frac{\sqrt{{65}}}{{9}}\) in the formula
\(\displaystyle \sin{{\left(\frac{\alpha}{{2}}\right)}}=\sqrt{{\frac{{{1}- \cos{\alpha}}}{{2}}}}\)
\(\displaystyle \sin{{\left(\frac{\alpha}{{2}}\right)}}\)
\(\displaystyle=\sqrt{{\frac{{{1}-{\left(-\frac{\sqrt{{65}}}{{9}}\right)}}}{{2}}}}\)
\(\displaystyle=\sqrt{{\frac{{{1}+\frac{\sqrt{{65}}}{{9}}}}{{2}}}}\)
\(\displaystyle=\sqrt{{\frac{{{9}+\sqrt{{65}}}}{{18}}}}\)
Multiply numerator and denominator by 2
\(\displaystyle=\sqrt{{\frac{{{2}{\left({9}+\sqrt{{65}}\right)}}}{{{18}{\left({2}\right)}}}}}\)
\(\displaystyle=\sqrt{{\frac{{{18}+{2}\sqrt{{65}}}}{{36}}}}\)
\(\displaystyle=\sqrt{{{13}+{2}\sqrt{{13}}\frac{\sqrt{{{5}+{5}}}}{{6}}}}\)
\(\displaystyle=\frac{\sqrt{{{\left(\sqrt{{13}}+\sqrt{{5}}\right)}^{2}}}}{{6}}\)
\(\displaystyle=\frac{{\sqrt{{13}}+\sqrt{{5}}}}{{6}}\)
Answer: \(\displaystyle=\frac{{\sqrt{{13}}+\sqrt{{5}}}}{{6}}\)
0

Relevant Questions

asked 2021-02-06
Given \(\displaystyle \csc{{\left({t}\right)}}={\left[\frac{{-{12}}}{{{7}}}\right]}\)\ \text{and}\ \displaystyle{\left[{\left(-\frac{\pi}{{2}}\right)}<{t}<{\left(\frac{\pi}{{2}}\right)}\right]}\) .
Find \(\sin\ t,\ \cos\ t\ \text{and}\ \tan\ t.\) Give exact answers without decimals.
asked 2020-11-08
A true statement by inserting a symbol \(\displaystyle<,>{\quad\text{or}\quad}=\) between the given numbers \(\displaystyle{0.58}\overline{{3}}{\quad\text{and}\quad}\frac{6}{{11}}\)
asked 2020-11-07
If sec \(\displaystyle\alpha=\frac{41}{{9}},{0}<\alpha<\frac{\pi}{{2}},\) then find the exact value of each of the following.
a) \(\displaystyle{\sin},\frac{\alpha}{{2}}\)
b) \(\displaystyle{\cos},\frac{\alpha}{{2}}\)
c) \(\displaystyle{\tan},\frac{\alpha}{{2}}\)
asked 2021-01-31
Find the solution to this equation:
\(\displaystyle\sqrt{{2}} \cos{{\left({x}\right)}} \sin{{\left({x}\right)}}+ \cos{{\left({x}\right)}}={0}\)
The solution should be such that all angles are in radian. for solution the first angle should be between \(\displaystyle{\left[{0},{2}\pi\right)}\) and then the period.
And when 2 or more solutions are available then the solution must be in increasing order of the angles.
asked 2020-10-28
The function \(\displaystyle{\left({9}{h}\right)}={8}{e}^{{-{0.4}{h}}}\) can be used to determine the milligrams D of a certain drug in a patient's bloodstream h hours after the drug has been given. How many milligrams (to two decimals) will be resent in 7 years?
asked 2020-11-08
A true statement by inserting a symbol \(\displaystyle<,>{\quad\text{or}\quad}=\) between the given numbers 7.123 and \(\displaystyle\frac{456}{{64}}.\)
asked 2020-11-23
To find: The solution of the inequality and interval notation.
The given inequality equation is:
\(\displaystyle{2}{\left({x}-{3}\right)}-{5}\le{3}{\left({x}+{2}\right)}-{18}\)
asked 2021-01-15
To make: A true statement by inserting a symbol \(<,\ >\ or\ =\ \text{between the given numbers}\ \displaystyle\overline{{0.6}}{\quad\text{and}\quad}\frac{5}{{6}}.\)
asked 2021-02-19
Equation: 8 divided by \(\displaystyle{\left({x}^{2}+{x}+{1}\right)}={1}\)
Use crossing graphs method to solve the above equation. There are 2 solutions. Round answers to 2 decimals. Provide smaller and larger value:
\(\displaystyle{x}={\left({s}{m}{a}{l}\le{r}{v}{a}{l}{u}{e}\right)}{x}={\left({l}{a}{r}\ge{r}{v}{a}{l}{u}{e}\right)}\)
asked 2020-11-07
The following quadratic function in general form, \(\displaystyle{S}{\left({t}\right)}={5.8}{t}^{2}—{81.2}{t}+{1200}\) models the number of luxury home sales, S(t), in a major Canadian urban area, according to statistical data gathered over a 12 year period. Luxury home sales are defined in this market as sales of properties worth over $3 Million (inflation adjusted). In this case, \(\displaystyle{\left\lbrace{t}\right\rbrace}={\left\lbrace{0}\right\rbrace}{Z}{S}{K}\ \text{represents}\ {2000}{\quad\text{and}\quad}{\left\lbrace{t}\right\rbrace}={\left\lbrace{11}\right\rbrace}\)represents 2011. Use a calculator to find the year when the smallest number of luxury home sales occurred. Without sketching the function, interpret the meaning of this function, on the given practical domain, in one well-expressed sentence.
...