# Please, describe the application of the Alternating Series Test for each series:

Please, describe the application of the Alternating Series Test for each series:
a) $$\displaystyle{\sum_{{{n}={1}}}^{\infty}}\frac{{\left(-{1}\right)}^{{n}}}{{n}}$$
b) $$\displaystyle{\sum_{{{n}={1}}}^{\infty}}\frac{{1}}{{n}}$$
c) $$\displaystyle{\sum_{{{n}={1}}}^{\infty}}{\left(-{1}\right)}^{{n}}$$

• Questions are typically answered in as fast as 30 minutes

### Plainmath recommends

• Get a detailed answer even on the hardest topics.
• Ask an expert for a step-by-step guidance to learn to do it yourself.

Khribechy
a) $$\displaystyle{\sum_{{{n}={1}}}^{\infty}}\frac{{\left(-{1}\right)}^{{n}}}{{n}}$$ – the given series converges
b) $$\displaystyle{\sum_{{{n}={1}}}^{\infty}}\frac{{1}}{{n}}$$ – the Alternatin Series Test is inconclusive or cannot be applied to the series
c) $$\displaystyle{\sum_{{{n}={1}}}^{\infty}}{\left(-{1}\right)}^{{n}}$$ – the Alternatin Series Test is inconclusive or cannot be applied to the series