\(\displaystyle{1}+\frac{{1}}{{4}}+\frac{{1}}{{9}}+\frac{{1}}{{16}}+\frac{{1}}{{25}}+…\)

\(\displaystyle\frac{{1}}{{1}^{{2}}}+\frac{{1}}{{2}^{{2}}}+\frac{{1}}{{3}^{{2}}}+\frac{{1}}{{4}^{{2}}}+\frac{{1}}{{5}^{{2}}}+…\), so \(\displaystyle{\sum_{{{n}={1}}}^{\infty}}\frac{{1}}{{\left({n}\right)}^{{2}}}\)

Harmonic series are given as: \(\displaystyle{\sum_{{{n}={1}}}^{\infty}}\frac{{1}}{{\left({n}\right)}^{{p}}}\), in the above series p = 2

Hence, the series would be classified as a p-series with p > 1

\(\displaystyle\frac{{1}}{{1}^{{2}}}+\frac{{1}}{{2}^{{2}}}+\frac{{1}}{{3}^{{2}}}+\frac{{1}}{{4}^{{2}}}+\frac{{1}}{{5}^{{2}}}+…\), so \(\displaystyle{\sum_{{{n}={1}}}^{\infty}}\frac{{1}}{{\left({n}\right)}^{{2}}}\)

Harmonic series are given as: \(\displaystyle{\sum_{{{n}={1}}}^{\infty}}\frac{{1}}{{\left({n}\right)}^{{p}}}\), in the above series p = 2

Hence, the series would be classified as a p-series with p > 1