To find: The value of x for the provided equation displaystyle{0.7}{x}+{1.4}={3.92} and express the solution in decimal form. And also check the solution for the equation.

Question
Decimals
asked 2020-12-17
To find:
The value of x for the provided equation \(\displaystyle{0.7}{x}+{1.4}={3.92}\) and express the solution in decimal form. And also check the solution for the equation.

Answers (1)

2020-12-18
Approach:
To solve the equation that involve decimals, there are two commonly used procedures. One of the procedures is to keep the numbers in decimal form, then solve the equation by applying the properties. Second procedure is to multiply both sides of the equation by an appropriate power of 10 clear the equation of all decimals.
Calculation:
Since, keep this equation in decimal form.
Consider, \(\displaystyle{0.7}{x}+{1.4}={3.92}\), substract like terms.
\(\displaystyle{0.7}{x}={3.92}-{1.4}\)
\(\displaystyle{0.7}{x}={2.52}\)
\(\displaystyle{x}=\frac{2.52}{{0.7}}\)
\(\displaystyle={3.6}\)
Now, check the solution by putting the value of x in the provided equation.
\(\displaystyle{0.7}{x}+{1.4}={3.92}\)
\(\displaystyle{0.7}{\left({3.6}\right)}+{1.4}={3.92}\)
\(\displaystyle{2.52}+{1.4}={3.92}\)
\(\displaystyle{3.92}={3.92}\)
Answer:
The solution set \(\displaystyle={3.6}\)
0

Relevant Questions

asked 2021-02-08
To Find: The value of x for the provided equation \(\displaystyle{0.7}{x}+{1.4}={3.92}\) and express the solution in decimal form. And also check the solution for the equation.
asked 2020-10-20
The value of x for the provided equation \(\displaystyle{1.2}{x}+{3.4}={5.2}\) and express the solution in decimal form and also check the solution for the equation. Use your calculator whenever you find it helpful.
\(\displaystyle{1.2}{x}+{3.4}={5.2}\)
asked 2021-02-20
The value of x for the provided equation \(\displaystyle{0.12}{x}+{0.14}{\left({550}-{x}\right)}={72.5}\) and express the solution in decimal form, and also check the solution to the equation.
asked 2021-01-02
Solve the equation and express the solution in decimal form:
\(\displaystyle{0.8}{\left({2}{x}-{1.4}\right)}={19.52}\)
asked 2021-01-31
Find the solution to this equation:
\(\displaystyle\sqrt{{2}} \cos{{\left({x}\right)}} \sin{{\left({x}\right)}}+ \cos{{\left({x}\right)}}={0}\)
The solution should be such that all angles are in radian. for solution the first angle should be between \(\displaystyle{\left[{0},{2}\pi\right)}\) and then the period.
And when 2 or more solutions are available then the solution must be in increasing order of the angles.
asked 2020-12-16
To find:
The solution of the inequality and the interval notation.
Given:
The given inequality equation is,
\(\displaystyle-{0.3}\ge{2.4}\)
asked 2020-12-25
To determine: The linear equation \(\displaystyle{1.2}{m}-{3.2}-{1.6}\) and check the solution.
asked 2021-03-12
Find the solution of the equation rounded to two decimals. 1) \(\displaystyle{3.02}{x}+{1.48}={10.92}\) 2) \(\displaystyle{8.36}-{0.95}{x}={9.97}\) 3) \(\displaystyle{2.15}{x}-{4.63}={x}+{1.19}\)
asked 2020-11-23
To find: The solution of the inequality and interval notation.
The given inequality equation is:
\(\displaystyle{2}{\left({x}-{3}\right)}-{5}\le{3}{\left({x}+{2}\right)}-{18}\)
asked 2020-10-27
Solve the equation graphically in the given interval. State each answer rounded to two decimals.
\(\displaystyle{x}^{{\frac{1}{{3}}}}-{x}={0},{\left[-{3},{3}\right]}\)
\(x = ?\)
...