Find the exact value of \cot(\arcsin\frac{3}{8}) without using a calculato

DofotheroU 2021-08-16 Answered
Find the exact value of \(\displaystyle{\cot{{\left({\arcsin{{\frac{{{3}}}{{{8}}}}}}\right)}}}\) without using a calculator.

Want to know more about Trigonometry?

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

Caren
Answered 2021-08-17 Author has 24610 answers
1.\(\displaystyle{a}{d}{j}=\sqrt{{{h}{y}{p}^{{{2}}}-{o}{p}{p}^{{{2}}}}}=\sqrt{{{8}^{{{2}}}-{3}^{{{2}}}}}=\sqrt{{{55}}}\)
2. \(\displaystyle{\cot{\theta}}={\frac{{{a}{d}{j}}}{{{o}{p}{p}}}}={\frac{{\sqrt{{55}}}}{{{3}}}}\)
Result :\(\displaystyle{\frac{{\sqrt{{55}}}}{{{3}}}}\)
Not exactly what you’re looking for?
Ask My Question
15
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-08-16
Find exact value of \(\displaystyle{\sin{{495}}}\) degrees without a calculator?
asked 2022-01-16
Solving \(\displaystyle{\frac{{58}}{{\cot{{36}}}}}^{{\circ}}={{\cos}^{{3}}{x}}\) without substituting the trig values for \(\displaystyle{36}^{{\circ}}\)
asked 2021-08-15
Find the exact value of the expression \(\displaystyle{\tan{{\left({\frac{{{4}\pi}}{{{3}}}}-{\frac{{\pi}}{{{4}}}}\right)}}}\)
asked 2021-08-13
Find the exact value of the expression \(\displaystyle{\tan{{\left[{{\cos}^{{-{1}}}{\left(-{\frac{{\sqrt{{{3}}}}}{{{2}}}}\right)}}\right]}}}\) Do not use a calculator.
asked 2022-01-14
How to evaluate limit without L'Hospital's rule, but using \(\displaystyle\lim_{{{x}\to{0}}}{\frac{{{\sin{{x}}}}}{{{x}}}}={1}\)
I am having hard time evaluating this limit:
\(\displaystyle\lim_{{{x}\to{0}}}{\frac{{{\cos{{3}}}{x}-{1}}}{{{\cos{{2}}}{x}-{1}}}}\)
I know, that this fact can help
\(\displaystyle\lim_{{{x}\to{0}}}{\frac{{{\sin{{x}}}}}{{{x}}}}={1}\)
But how? We can transform the first expression to
\(\displaystyle\lim_{{{x}\to{0}}}{\frac{{{\cos{{3}}}{x}-{1}}}{{-{2}{{\sin}^{{2}}{x}}}}}\)
but what should I do next? I cannot use L'Hopital's rule for solving this.
asked 2021-12-30
Without using L'Hospital's rule, what is \(\displaystyle\lim_{{{x}\to{0}}}{\frac{{{\tan{{x}}}-{\sin{{x}}}}}{{{x}^{{3}}}}}\)?
asked 2022-01-16
I want to solve this equation
\(\displaystyle{\arccos{{\left({x}\right)}}}+{\arcsin{{\left({x}^{{2}}-{x}+{1}\right)}}}={\frac{{\pi}}{{{2}}}}\)
I write this: for all \(\displaystyle{x}\in{\left[-{1},{1}\right]}\)
\(\displaystyle{\arcsin{{\left({x}^{{2}}−{x}+{1}\right)}}}={\frac{{\pi}}{{{2}}}}−{\arccos{{\left({x}\right)}}}\) then \(\displaystyle{x}^{{2}}−{x}+{1}={\sin{{\left({\frac{{\pi}}{{{2}}}}-{\arccos{{\left({x}\right)}}}\right)}}}={\cos{{\left({\arccos{{\left({x}\right)}}}\right)}}}={x}\)
\(\displaystyle{x}^{{2}}−{x}+{1}={x}\Rightarrow{x}^{{2}}−{2}{x}+{1}={0}\Rightarrow{\left({x}−{1}\right)}^{{2}}={0}\Rightarrow{x}={1}\)
Is it true ?
...