How do you solve $\mathrm{sin}x\mathrm{cos}x=\frac{1}{2}$ for x in the interval $[0,2\pi )$ ?

Jaya Legge
2021-08-16
Answered

How do you solve $\mathrm{sin}x\mathrm{cos}x=\frac{1}{2}$ for x in the interval $[0,2\pi )$ ?

You can still ask an expert for help

dieseisB

Answered 2021-08-17
Author has **85** answers

Check:

asked 2021-08-20

Let P(x, y) be the terminal point on the unit circle determined by t. Then

asked 2022-04-01

Solving ${e}^{\mathrm{sin}x}+{e}^{\mathrm{cos}x}=e+1$

asked 2022-01-25

Proof that $\sum _{n=1}^{\mathrm{\infty}}\frac{{(-1)}^{n+1}\mathrm{sin}\left(n\right)}{n}=\frac{1}{2}$

asked 2022-01-14

Limit of $\mathrm{sin}\left(\sqrt{x+2}\right)-\mathrm{sin}\left(\sqrt{x+4}\right)\text{}\text{as}\text{}x\to \mathrm{\infty}$

asked 2022-04-07

I want to evaluate

$\int \frac{\mathrm{cos}\theta d\theta}{\sqrt{2-9{\mathrm{sin}}^{2}\theta}}$

asked 2022-05-11

If $\alpha +\beta ={\displaystyle \frac{\pi}{2}}$ and $\beta +\varphi =\alpha $ then $\mathrm{tan}\alpha $ equals.

asked 2022-03-24

How do I find out the value of p for $\mathrm{sin}p+\mathrm{cos}p=0$ ?