Question

Equation: 8 divided by displaystyle{left({x}^{2}+{x}+{1}right)}={1} Use crossing graphs method to solve the above equation. There are 2 solutions. Rou

Decimals
ANSWERED
asked 2021-02-19
Equation: 8 divided by \(\displaystyle{\left({x}^{2}+{x}+{1}\right)}={1}\)
Use crossing graphs method to solve the above equation. There are 2 solutions. Round answers to 2 decimals. Provide smaller and larger value:
\(\displaystyle{x}={\left({s}{m}{a}{l}\le{r}{v}{a}{l}{u}{e}\right)}{x}={\left({l}{a}{r}\ge{r}{v}{a}{l}{u}{e}\right)}\)

Answers (1)

2021-02-20

Step 1
8 divided by \(\displaystyle{\left({x}^{2}+{x}+{1}\right)}={1}\)
This means,
\(\displaystyle{8}\text{/}{\left({x}^{2}+{x}+{1}\right)}={1}\)
Hence, \(\displaystyle{8}={x}^{2}+{x}+{1}\)
Step 2
Let's plot two graphs:
\(y = 8\)
and \(\displaystyle{y}={x}^{2}+{x}+{1}\)
image
There are two solutions (the points of intersection):
\(x =\ -3.19\) (smaller value)
\(x = 2.19\) ( larger value)

0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-06-10
Determine whether the given set S is a subspace of the vector space V.
A. V=\(P_5\), and S is the subset of \(P_5\) consisting of those polynomials satisfying p(1)>p(0).
B. \(V=R_3\), and S is the set of vectors \((x_1,x_2,x_3)\) in V satisfying \(x_1-6x_2+x_3=5\).
C. \(V=R^n\), and S is the set of solutions to the homogeneous linear system Ax=0 where A is a fixed m×n matrix.
D. V=\(C^2(I)\), and S is the subset of V consisting of those functions satisfying the differential equation y″−4y′+3y=0.
E. V is the vector space of all real-valued functions defined on the interval [a,b], and S is the subset of V consisting of those functions satisfying f(a)=5.
F. V=\(P_n\), and S is the subset of \(P_n\) consisting of those polynomials satisfying p(0)=0.
G. \(V=M_n(R)\), and S is the subset of all symmetric matrices
asked 2021-05-21
The pmf of the amount of memory X (GB) in a purchased flash drive is given as the following.
\(\begin{array}{|c|c|}\hline x & 1 & 2 & 4 & 8 & 16 \\ \hline p(x) & 0.05 & 0.10 & 0.30 & 0.45 & 0.10 \\ \hline \end{array} \)
a) Compute E(X). (Enter your answer to two decimal places.) GB
b) Compute V(X) directly from the definition. (Enter your answer to four decimal places.) \(GB^{2}\)
c) Compute the standard deviation of X. (Round your answer to three decimal places.) GB
d) Compute V(X) using the shortcut formula. (Enter your answer to four decimal places.) \(GB^{2}\)
asked 2021-05-19
For digits before decimals point, multiply each digit with the positive powers of ten where power is equal to the position of digit counted from left to right starting from 0.
For digits after decimals point, multiply each digit with the negative powers of ten where power is equal to the position of digit counted from right to left starting from 1.
1) \(10^{0}=1\)
2) \(10^{1}=10\)
3) \(10^{2}=100\)
4) \(10^{3}=1000\)
5) \(10^{4}=10000\)
And so on...
6) \(10^{-1}=0.1\)
7) \(10^{-2}=0.01\)
8) \(10^{-3}=0.001\)
9) \(10^{-4}=0.0001\)
asked 2021-05-11
To solve:
The equation \(x^{2}-1.800x+0.810=0\) using quadratic formula and a calculator, rounding to three decimals.
asked 2021-05-22
To solve:
The equation \(x^{2}-2.450x-1.500=0\) using quadratic formula and a calculator, rounding to three decimals.
asked 2021-06-11
Find all real solutions of the equation, rounded to two decimals.
\(x^{4}-8x^{2}+2=0\)
asked 2021-05-14
Consider the accompanying data on flexural strength (MPa) for concrete beams of a certain type.
\(\begin{array}{|c|c|}\hline 11.8 & 7.7 & 6.5 & 6 .8& 9.7 & 6.8 & 7.3 \\ \hline 7.9 & 9.7 & 8.7 & 8.1 & 8.5 & 6.3 & 7.0 \\ \hline 7.3 & 7.4 & 5.3 & 9.0 & 8.1 & 11.3 & 6.3 \\ \hline 7.2 & 7.7 & 7.8 & 11.6 & 10.7 & 7.0 \\ \hline \end{array}\)
a) Calculate a point estimate of the mean value of strength for the conceptual population of all beams manufactured in this fashion. \([Hint.\ ?x_{j}=219.5.]\) (Round your answer to three decimal places.)
MPa
State which estimator you used.
\(x\)
\(p?\)
\(\frac{s}{x}\)
\(s\)
\(\tilde{\chi}\)
b) Calculate a point estimate of the strength value that separates the weakest \(50\%\) of all such beams from the strongest \(50\%\).
MPa
State which estimator you used.
\(s\)
\(x\)
\(p?\)
\(\tilde{\chi}\)
\(\frac{s}{x}\)
c) Calculate a point estimate of the population standard deviation ?. \([Hint:\ ?x_{i}2 = 1859.53.]\) (Round your answer to three decimal places.)
MPa
Interpret this point estimate.
This estimate describes the linearity of the data.
This estimate describes the bias of the data.
This estimate describes the spread of the data.
This estimate describes the center of the data.
Which estimator did you use?
\(\tilde{\chi}\)
\(x\)
\(s\)
\(\frac{s}{x}\)
\(p?\)
d) Calculate a point estimate of the proportion of all such beams whose flexural strength exceeds 10 MPa. [Hint: Think of an observation as a "success" if it exceeds 10.] (Round your answer to three decimal places.)
e) Calculate a point estimate of the population coefficient of variation \(\frac{?}{?}\). (Round your answer to four decimal places.)
State which estimator you used.
\(p?\)
\(\tilde{\chi}\)
\(s\)
\(\frac{s}{x}\)
\(x\)
asked 2021-06-12
To calculate:
The solution of the equation \(0.36u+2.55=0.41u+6.8\) by clearing the decimals.
asked 2020-10-28

Solve the linear equations by considering y as a function of x, that is, \(\displaystyle{y}={y}{\left({x}\right)}.{x}{y}'+{\left({1}+{x}\right)}{y}={e}^{{-{x}}} \sin{{2}}{x}\)

asked 2021-01-04

Find the linear equations that can be used to convert an (x, y) equation to a (x, v) equation using the given angle of rotation \(\theta\).
\( \theta=\left\{\tan^{-1}\frac{5}{12}\right\}\)

...